
Executive Summary

 This VBA project is inspired in the current events project posted on the VBA projects blog.

The blog can be accessed on http://vbaprojects.blogspot.com/ and the original description for

this project, as well as the original solution, are available under the title “Current Events!” in the

2015 subdivision.

 We all know that in business it is essential to be aware of the most recent facts and events

around the world. These events can change companies’ strategies, deals, and impact the decision

making in all enterprises. Business leaders have to find a way to learn about those events so that

they can use the information in their daily jobs.

 At the same time, all the demands of the modern life creates a challenge to stay current

with the events around us. There are some many responsibilities in people’s lives that even taking

a short pause to read the news is something really hard to remember and to do.

 The proposed VBA project will help people to get the current news from two of the most

important sources in the market (The Wall Street Journal and The Economist) by automatizing

the access and sending the headline of the publications to the user via email. The excel

spreadsheet will also set up an automatic time to process the solution every day, so that people

can get the daily news in their inbox with no additional effort.

 Since The Wall Street Journal and The Economist are restricted to subscribers, this project

will use BYU library privileges to download the news and the user will have to provide a valid BYU

ID and password to complete the access.

 By using this VBA solution the user will be able to keep current with the main events

happening around the world.

http://vbaprojects.blogspot.com/

Implementation Documentation

The solution was developed entirely in one module, it also utilizes two Userforms for interaction

with the user and one class to implement the Internet Explorer control interface, the object that

implements this class was declared as a global variable to be accessible to all procedures in the

module. Ribbon customization was applied to make the user experience more intuitive, there’s

a tab called “News” and inside that the user will find a button “Get news!” that he/she will use

to start the procedures. Links were created inside the spreadsheet to allow the use to access and

read the news, it required a change in the Worksheet_FollowHyperlink native method so that the

code makes sure the user is loged in Learning Suite before opening the news, this was one big

difference to the original proposal and this change was made because I couldn’t guarantee that

the user was corrected loged in the BYU channels using a simple link in an email message

There are two main parts happening during the process:

- Accessing the news and sending it to the user

- Enabling the user to read the news

For the first part (Accessing the news and sending it to the user) there’s a main sub procedure

that orquestrates the steps of the VBA code, this procedure is called getNews, then the four

major steps inside that are: getting the news from WSJ, getting the news from The Economist,

ending the mail to the user, and scheduling the automatic macro execution.

For the second part (Enabling the user to read the news) there’s one main procedure that

supports the access and viewing of the news, this procedure is called “openPage”. We will go

over the details for those parts below.

Accessing the news and sending it to the user

This part starts when the user clicks on the “Get News!” button in the “News” tab. Using a

callback method (MacroNews) the button activates the user form called “InputForm”, the user

enters his data for Learning Suite Login, email login and destinatary of email. When the user click

“OK” getNews sub procedure called. This is the orquestrator that will command the steps to

retrieve the news from WSJ and The Economist. If the user clicks “Cancel” the form is unloaded.

The getNews sub procedure only calls other sub procedures inside the module and one method

from the excel spreadsheet to set the right position on the screen. This is a printscreen from the

getNews method:

Figure 1 - getNews print

 As shown above, the first sub procedure called is getWSJ, as the name suggests this

procedure is responsible to retrieve the data from WSJ. getWSJ has 5 variables and 1 constant to

store values used in the logic. The sub procedure makes IE visible and then navigates to the

portal that make WSJ accessible to BYU’s library users (http://dbs.lib.byu.edu/factiva), with the

page loaded the code checks if the user is logged into the BYU system, by checking the document

location, if IE is in the login page, then the login data is retrieved from the InputForm and

populated in the page, then the form is submitted.

With the user logged in the browser continues the navigation to the Factiva portal and then to

its home page. Once in the home page the solution will retrieve the headlines from WSJ, since

there are always five (5) headlines in the home page the code uses a for loop to get the

information. The sub procedure ends and control goes back to getNews. The picture below shows

the Factiva home page.

http://dbs.lib.byu.edu/factiva

Figure 2- Factiva Home

The next sub procedure called is getEconomist, it is responsible to retrieve the news from The

Economist. This procedure is very similar to getWSJ, it checks for login status, navigates to The

Economist portal using a BYU script (https://www.lib.byu.edu/cgi-

bin/remoteauth.pl?url=http://www.economist.com/printedition/covers) and then navigates to

the last issue of the The Economist, retrieving the review for business and politics. Since we only

get these two (2) links there’s no loop here. The following picture shows part of The Economist

page.

https://www.lib.byu.edu/cgi-bin/remoteauth.pl?url=http://www.economist.com/printedition/covers
https://www.lib.byu.edu/cgi-bin/remoteauth.pl?url=http://www.economist.com/printedition/covers

Figure 3 - Economist page

 Both sub procedures (getWSJ and getEconomist) make calls to the LinkMaker sub

procedure. This procedure is responsible to create a link making a reference to the cell that stores

the address of the news. It allows us to modify the native method Worksheet_FollowHyperlink

and use our own code to open the news.

 Again, the control returns to getNews. The IE agent is terminated, since it won’t be used

anymore in this part of the process, and the sendEmail sub procedure is called.

 To send the email the sender and destinatary data are retrieved from the InputForm, the

procedure then saves a copy of the file, clears the news from the spreadsheet and send the email,

writing the subject “News Feed”, the body of the message, and attaching the file just created to

the email. The sub procedure sendGmail is called to effectively send the message, this is the same

procedure provided in class by Prof. Allen. Only email addresses can be used to send the message

in this project. The message is sent and the file is deleted from the user’s machine. The picture

below shows the sendEmail code.

Figure 4 - sendEmail code

Once again control is back to getNews and it finally call the schedule sub procedure to

schedule the automatic execution for this code. The schedule sub procedure is shown below:

Figure 5 - Schedule sub procedure

For both of the main sub procedures used to get the news (getWSJ and getEconomist) I

used the resources available in the agent class to navigate among the different pages I needed

(agent.openPage method) and locate the links and content that I needed to store and use

(agent.moveTo and agent.getText methods). The string functions, like inStr, Mid, Left, and Right

were also used throughout the project. The picture below shows an example from the code

where the macro retrieves news from WSJ.

Figure 6 - Example of methods used in the project

At this point the first part of the process is completed.

Enabling the user to read the news

 The user will receive an email with a spreadsheet containing the news and its links. The

picture below shows the email:

Figure 7 - Email sample

 The user will open the excel file and will see the following screen:

Figure 8- Excel file with news

 The user will click in the link he/she wants to see and the modified

Worksheet_FollowHyperlink will call the openPage sub procedure, the ReadForm will be

activated, the user will input his/her Learning Suite login information there and the sub

procedure will open the link using the IE agent and checking for the login status. If it’s a WSJ news

it will connect to Factiva, if it’s a The Economist news it will connect to The Economist site. In the

end the form is hide, so that the user information is still available for our macro.

 This finishes the whole process.

Discussion of Learning and Difficulties Encountered

 Most of the commands and skills needed for this project were learned in class, this is

mainly a web scraping and the classes we had cover most of the subjects needed. However there

were some specific needs to accomplish the task that required google research:

- Set automatic execution of the macro: I was very concerned with this part of the project,

I thought I would need to build a .BAT file and schedule the execution through windows.

It was a good surprise to discover that excel has an easy way to set automatic execution,

after a simple search on google the very first article about it was very straightforward and

the code showed was simple. Figure 5, above, shows the code for automatic execution.

- Send email with an .xlsm file: it was another big concern that I had when I started the

project. When I first ran the original project from vbaprojects.blogspot.com I thought it

did a very good, but I was a little bit frustrate because I couldn’t read the news by clicking

in the links (the portals blocked access due to user authorization), that’s why I decided to

save the news in a excel file and use VBA to access the content. However, I was afraid that

the email server would not allow an .xlms attachment in the email. In fact, when we open

the attachment all the macros are disabled, but it is very easy to enable them and during

the tests I didn’t have any problem sending the attachment.

- Server authentication: it was a little tricky to authenticate in the news portals to access

the news. The Learning Suite login doesn’t give access to them, so I spent some time

adjusting the login to go to the right addresses for WSJ and The Economist from the BYU

library website so that BYU’s user and password could be used to make the

authentication.

- Page errors: The code is still fragile to errors happening in the external sites, for example

this very morning, when I was testing, The Economist had a script that was not answering

in its website and it would stop IE and make the code crash. To work around these

problems I introduced several statements On Error Resume Next so that the code at least

runs till the end. Nevertheless, if I had more time I would create more robust error

handling code to try some different ways to complete the access.

- Creating a tab and button in the ribbon: I had to refer to the class video where we

changed the ribbon and added a tab and a button for activate the macro. It was not

difficult to do that task but since I had not attended that class I had no idea how to do

that. It was really valuable to have the video available.

- Delete the created file: I had a few problems to delete the copy of the spreadsheet I

created, several time Excel showed a message stating that it couldn’t delete the file

because the program couldn’t access it. After a while I realized it was because of a sync

problem between attaching the file in the email and trying to delete it. The problem was

solved using the Application.wait method.

Overall, the project was a good way to solidify the concepts and subjects learned in class

and at the same time expand the knowledge to solve different kinds of problems that we

had not faced in the course.

Assistance

I needed assistance to understand what exactly was expected from this project, so I ran the

original project available in the blogspot (but didn’t look into the code) to see the result and get

a feeling of what I was supposed to do.

As disclosed above I used the agent class and the sendGmail function that were provided by

Professor Allen in class, with no changes to the respective source codes.

Besides that I solved all my questions and difficulties by searching in Google and did not require

any help from the Professor, the TA’s, or any other third party.

