
Nutritious Meal Generator

Dain Berrett

Executive Summary

In January of this year I decided to make a major lifestyle change in regards to my health and nutrition. I

researched several fitness plans and settled on the Body for Life approach, mostly due to its practical

nature and rounded approach to wellness. Body for Life emphasizes 6 days of exercise a week,

alternating between strength training and aerobics. Because you are expected to gain muscle quickly,

excellent nutrition is key. The program recommends 6 meals a day, each of which includes one portion

each of protein and carbs. Additionally, two meals a day (at minimum) require vegetables. The

acceptable proteins, carbs, and vegetables are limited to a certain lean, non-processed list.

For the first 10 weeks of the program things were going great and I was both losing fat and gaining

muscle. I was enjoying the meals a lot at first, but was finding that I rarely had time to really plan them

out. I kept on resorting to eating the same meals again and again and getting tired of them. Additionally,

without knowing exactly what meals to plan for during the week, grocery shopping on Saturday was

difficult for my wife and I. These difficulties were threatening my success in the program, and I knew I

had to find a way to automate creating my meal plan each week from a pool of acceptable proteins,

carbs, and vegetables.

My spreadsheet does this very thing, generating 6 meals for each day of the week and only drawing

from a set list of Body for Life foods. Further, I have built in many of my own preferences to the logic in

the macro. For example, the first meal of each day always includes eggs (I love eggs in the morning). The

third and sixth meals are protein shakes (I love mixing these throughout the day). The other meals can

come from any mix of the food groups. This meal generator will ensure that I stay on track with the

program and continue to enjoy a diversity of foods. With one click I can generate meals for a week, and

with another click I can print it off to hang on my fridge for reference.

Details

 Assistance: I received no assistance on this project.

 User Interface

o I created a custom tab called ‘Meal Generator’ that included two custom buttons:

 Create Meals: This button referenced a custom image that I found online, and

kicked off the generateMeals() procedure.

 Print Plan: This button printed the < Plan > sheet with one click so that I

wouldn’t have to open the Print dialog every time.

 I created a nice instruction graphic on the first sheet in Adobe Fireworks so that

if my wife or friends use the workbook (I plan on sharing it with some friends

who are following the same Body for Life program) they have a basic guide.

 The plan sheet was very important as I would be referencing both when making

meals and grocery shopping. I used a purple and blue color scheme, aligned

everything, ensured it fit perfectly in a landscape print layout, and even added a

motivational graphic showing how important good nutrition was to my overall

well-being.

 Data

o I created sheets for each protein group, as well as categories such as carbs and

vegetables. I built my solution so that I could add additional items to any of these sheets

at any time and they would immediately be incorporated in the generated meal plan.

Here is an example of the beef sheet:

 Procedures & Key Variables

o Macro-wide variables: At the start of the project I declared several variables that would

act as the arrays holding all of the possible foods from several different sheets. For

example, regArray would hold proteins from all different protein categories and

respective sheets, such as beef, chicken, shellfish, etc. Because these food arrays would

be used in several different procedures, I declared them here so they would be available

throughout the macro.

o generateMeals(): This procedure accomplished two main purposes:

 1) Create arrays containing addresses for each type of food. Carbs, veggies, egg

meals, and protein meals were given their own arrays. All other proteins were

grouped together in the regArray. I build my meals around proteins, and since I

think that way in real life I wanted my program to follow the same logic.

 2) Introduce logic via a select case that would use loops to find the appropriate

input cells in the < Plan > sheet, designate certain cells as available for certain

meal categories (regular, egg, or protein shake meals), and route each loop

iteration to the appropriate meal creator function based on the cell category.

o eggMeal()

 generateMeals() passed eggMeal() the value to a specific input field, and

eggMeal() then:

 Referenced the eggArray and used the Rnd function to find a random

index, and the corresponding cell address. Then, eggMeal() inserted this

cell’s value to the input field passed from generateMeals(s)

 Checked the carb value for the randomly chosen egg field and, if empty,

chose a random value from the carb array and sent it to the appropriate

input on the < Plan > sheet. If a value was present, it simply passed it

along.

o Note: Some meals have carbs and/or vegetables that always go

with them (a breakfast burrito, for example), but for others

(such as steak) the carbs and vegetables are a lot more flexible

(sometimes I like a potato and salad with my steak, and other

times I like steamed broccoli and green beans). I therefore

needed my program to be flexible enough to include random

carb or vegetable foods when a meal didn’t require specific

items.

 Checked the vegetable value for the randomly chosen egg field and, if

empty, chose a random value from the vegetable array and sent it to

the appropriate input on the < Plan > sheet. If a value was present, it

simply passed it along.

o regMeal()

 Similar functionality to eggMeal(), except using regArray.

o proteinMeal()

 Similar functionality to proteinMeal(), except using shakeArray.

o printPlan()

 I wanted to make it easy for myself to print off the meal plan after generating it.

This button allowed me to do so with one click, regardless of which sheet was

previously active.

 Difficulties and Lessons Learned

o From my past experience as a product manager, I knew it was important to boil this one

down to the critical features. I ended up being very glad that I did, because this took a

lot longer than I expected it to.

o I found it very useful to write out the logic of the program before I went to code. I did

this at a high level for the entire macro, and also in more detail for each procedure.

o I really struggled remembering the syntax for arrays, and had to do a lot of research on

correct array methods since my solution was so heavily dependent on arrays.

o I learned a lot about the InStrRev function. At first I thought that it was giving me the

position of a designated character. This was causing me problems when I was using it

with the Right function to cut out the cell reference of a string I had concatenated

earlier. I finally realized I needed to subtract the InStrRev value from the length of the

entire string to get what I wanted.

