Log Parser

Scott Hutchings
4/14/15
IS 520

Executive Summary

Log files are everywhere in today’s technological world. Even some users of software
products may need to consult log files. Some of the more prevalent log files are associated
with websites and the web servers that host them.

Apache is a widely used HTTP server that hosts websites, and for each and every request to
the Apache web server a log entry is recorded. This results in millions of log entries for just
one web server. Sometimes it is necessary to look through these log files in order to
understand why a certain website is failing, or who may be accessing the website, or to
identify IP addresses that have attempted a denial of service attack.

The problem is trying to parse through the countless lines of log entries in each log file to find
what is needed. At my job | was asked to specifically find which websites are being hit and
how much.

| built an Excel workbook that can parse through log files and return a count of how many
similar matches have appeared in the log files. You are able to use regular expressions,
which are a simple way of specifying what pattern to look for, to dissect the log files. You are
able to parse through multiple log files. And you can specify the groups and which ones you
want to count.

| found that this application could be used for not only log files, but anything that might need
regular expressions to parse through text.

Implementation

This Excel workbook has the ability to parse through log files or any other text file and count
matched lines by a regular expression.

Component Usage

Userform User input

FileDialog Select files

Dictionary object Data collection

RegExp To match

Custom Excel Ribbon To open userform and other options
Excel File input To read log files

Below is the userform with tabs, the first tab is the file picker to choose the log files to parse.

Files to Parse I Regex Mapper] Output]

Add File(s) |
Files

i C:\Users\yoshutch\Dropbox\Work\access log

Remove File(s)

On the second tab the user can specify the regular expression and what to name each regex
group.

Files to Parse Regex Mapper I Qutput I

Regular Expression:
I () ()N ()" (\d+)

— Map Groups to Columns

Group #

Group 1 IP address

Group 2 Group 2

Group 3 Date

Group 4 Request

Group 5 Response

On the third and final tab of the userform the user is able to specify which columns to count
and also the name of the data sheet to write the parsed data to.

Files to Parse | Regex Mapper Output I

Output Sheet Name:l Data 2

[iRecord All Data to "Data" Spreadsheet (may be slow)i
— Indude Statistics Qutput
['IP address' (group 1) count

[~ "Group 2' (group 2) count
['Date' (group 3) count
¥ 'Request' (group 4) count

[~ 'Response' (group 5) count

Previous |

The parsing algorithm will use the regular expression to match log entries and then it will
group them by whatever column/group the user specified. In effect the result is similar to a
SQL statement like: “select column_name, count(*), from table group by column_name” so as
to show the number of times a particular matched portion of an entry was in all the log files
included. Below is a screenshot of the data output:

FILE HOME INSERT = PAGELAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER ADD-INS LOADTEST Analytic Solver Platform XLMiner TEAM = Regex Sco

E=lR=
Parser Saved Parser Clear Saved

Wizard ~ Wizard Config

Parse
Al v fe | Group

A B C D E F G H I
Group |Match Count Matched: 1546 Parse Started: 4/14/2015 20:39
Request GET /twiki/bin/edit/Main/Double_bounce_sender?topicparent=Main.ConfigurationVariables H Ignored: 1546 Parse Ended: 4/14/2015 20:39
Request GET /twiki/bin/rdiff/TWiki/NewUserTemplate?rev1=1.3&rev2=1.2 HTTP/1.1
Request GET /mailman/listinfo/hsdivision HTTP/1.1
Request GET /twiki/bin/view/TWiki/WikiSyntax HTTP/1.1
Request GET /twiki/bin/view/Main/DCCAndPostFix HTTP/1.1
Request GET /twiki/bin/oops/TWiki/AppendixFileSystem?template=oopsmore¶m1=1.12¶m2=
Request GET /twiki/bin/view/Main/PeterThoeny HTTP/1.1
Request GET /twiki/bin/edit/Main/Header_checks?topicparent=Main.ConfigurationVariables HTTP/1.1
10 Request GET /twiki/bin/attach/Main/OfficeLocations HTTP/1.1
11 Request GET /twiki/bin/view/TWiki/WebTopicEditTemplate HTTP/1.1
12 Request GET /twiki/bin/view/Main/WebChanges HTTP/1.1
3 Request GET /twiki/bin/edit/Main/Smtpd_etrn_restrictions?topicparent=Main.ConfigurationVariables F
14 Request GET /mailman/listinfo/business HTTP/1.1
15 Request GET /twiki/bin/rdiff/Main/Weblndex?revi=1.2&rev2=1.1 HTTP/1.1
16 Request GET /twiki/bin/view/TWiki/DontNotify HTTP/1.1
17 Request GET /twiki/bin/view/Main/TokyoOffice HTTP/1.1
18 Request GET /twiki/bin/view/Main/MikeMannix HTTP/1.1
19 Request GET /twiki/bin/attach/Main/PostfixCommands HTTP/1.1
20 Request GET /robots.txt HTTP/1.1
21 Request GET /twiki/bin/rdiff/Know/ReadmeFirst?rev1=1.5&rev2=1.4 HTTP/1.1
22 Request GET /twiki/bin/view/Main/TWikiGroups?rev=1.2 HTTP/1.1

WK NV AW N

9

A

R R N R R R PR R R R RBRBRRBRORRR R

Learning Outcomes

| spent some time first familiarizing myself with the log files of my company’s web servers. |
found out the pattern the server uses and built a regular expression that would capture and
group the log entries using online tools like regexr or regexpal.

| then started coding how the workbook would parse the file. First | hardcoded into a module a
sub procedure that would parse a single line. It would attempt to match the string with the
regular expression. Once that was working | took a step up and using the Excel’s file input
reader | began programming the parseFile sub procedure. | quickly ran into an issue with the
newline character. Apache is usually on a linux machine which only uses the line feed (LF)
character and not both line feed and carriage return characters. Excel’s defined way to read a
line in a file checks for both characters, so when | initially tried this excel ran out of memory.
So | had to write my own function that returned the next line.

After that | programmed how to iterate through files and call the parse file method. | then
began working on the userform that will allow users to input different variables.

| soon realized that even though Excel was able to parse through these log files Excel takes
way too long. | attempted to parse through six log files and it took about 30 minutes to parse
through each one. So unfortunately | needed to program a similar parsing algorithm in Java
for my assignment at my work, which by the way parsed through the six files in less than one
minute.

