
Caleb Brigman 

MBA 614 Spreadsheets for Automation 

Final Project: Personal Finance Dashboard 

 The project was to create a personal finance dashboard to track spending relative to budget 

goals. Currently, my wife and I’s finances a spread across four bank accounts and three consumer credit 

lines which has made it difficult to track. Each of the banks uses a different format for exporting account 

information which takes hours to standardize and then label according to the spending area. The 

purpose of the project was to automate this process so it can be completed monthly and create a 

dashboard to allow us to easily see our spending relative to our goals. 

 The dashboard tool has three major parts. First, the tool imports account activity from CSV files. 

Each transaction is standardized and labeled with one of the spending goals. Labels are selected for a 

type of transaction the first time it is imported into the tool and then is automatically labeled thereafter. 

Second, the transaction data is compiled and added to the dashboard. The dashboard includes overall 

numbers for each account as well as monthly numbers by spending area. The compiling is only done for 

months that are already over and when the numbers have not been compiled previously. Third, only the 

dashboard is published as a PDF and emailed via Outlook to my wife and me. 

Implementation Documentation 

 The personal finance dashboard has three major parts. The first part loads the bank account 

information from CSV files in a standardized format and labels each transaction. The second part takes 

the transactions and compile monthly and overall numbers which are added to the dashboard. The final 

part publishes the dashboard and emails it to my wife and I. Each part has a corresponding button on 

the ribbon. 

Structure of the Tool 



 The tool has five sheets. The first sheet is the Dashboard which contains the summary finance 

information and is the information that gets sent out.  

 

The second sheet is the Transaction which contain each individual transactions for each of the accounts 

in the standardized format and labeled based on the spending areas.  

 

The third sheet contains a repository of the “transaction core,” shortened transaction information with 

the date removed to all labeling to be automated. The repository also contains which label IDs 

correspond to which transaction cores.  



 

The fourth sheet contains the labels and label IDs.  

 

The final sheet is the goals and contains the spending areas and the associated goals for each area. Each 

sheet plays a specific part in the tool 

 

Load Statements 



 The first part of the tool is loading the transactions from the back statement. Loading bank 

statements is initiated by selecting the “Load Statement” button on the “Finances” tab. The macro loads 

the bank statements into the tool through four steps. 

Step 1: Select the Statement to Load 

 The macro first loads a file dialog box to select the statement to be loaded. The file select is 

filtered for CSV files and only CSV files can be selected. 

 

Step 2: Select Account Associated with Statement 

 After the file has been selected, a user form appears with a dropdown to select which account 

the statement is for. There are seven different account and the account type selected determines how 

the statement is processed and triggers one of seven different sub procedures. 

 

Step 3: Record the Data from the Statement into the Tool 



 From the statement, the date, value and name for each transaction is added into the tool on the 

“Transaction Sheet.” The location of the information on the statement varies by account so a separate 

sub is called depending on the account selected. The name of the account is also record with each 

transaction. Once the values have been recorded, the transaction name is edited to remove the non-

essential information, such as “POS Withdrawal,” and date specific information to create the 

“transaction core” which is used later. Each account has multiple formats for the transaction name with 

different formulas to edit them. 

Step 4: Label the Transaction 

 Once the information has been recorded and the “transaction core” is created, the transaction is 

labeled. The tool compared the transaction core to the transaction cores listed in the repository. When 

the matching transaction core is found, it records the common name for the transaction, such as Smiths, 

to the Transaction sheet. If there is only one Label ID associated with the transaction core, the tool looks 

about the ID on the label sheet and record the Primary and Secondary labels, such as “Eating out” and 

“Family,” for the transaction.  

If multiple IDs are associated with the transaction, a user form will appear to select which label 

to use.  

 



The user can also choose to associate an existing label with this transaction core by selecting 

“Add New Label.” This opens another user form to select from the existing labels. When the label is 

selected, the ID is added to the Label ID column on the Repository sheet.  

 

Additionally, the user could create an entirely new label by selecting “Create New Label.” This 

will open a series of input boxes to create the Primary and Secondary label and to select the time period 

for the label, either “Monthly” or “Annually.” These values are added to the next available row on the 

Labels sheet and assigned the next sequential number ID. 

When the labels have been added, the transaction is now standardized for all accounts and 

ready to be used to compile the dashboard. 

 

Compile Dashboard 



 The second part of the tool is compiling the dashboard. This takes the information from the 

Transactions and Goals and uses this to compile monthly finance numbers and the overall current 

financial position. The macro is activated by selecting the “Compile Dashboard” button on the 

“Finances” ribbon. The numbers are compiled in seven steps. 

Step 1: Check Label and Goal Match 

 The first step is to ensure that all labels have a corresponding goal. This ensures that no 

transactions are unintentionally left out of the dashboard. The tool compared each label to the goals to 

ensure each label has a corresponding goal and that the period, Monthly or Annually, matches between 

the label and the goal. If the label and goal match, the tool moves to the next label. If the period, does 

not match, an input box displays for the user to indicate the appropriate period and this period is 

changed on the Label and Goal sheet. If a goal does not exist for the label, the label is added to the next 

available row on the goal sheet and the user is asked to input a goal for the area in an input box. Once 

all of the labels and goals have been verified, the tool moves to the next step. 

Step 2: Determine Months to Compile 

 The next step is to identify which months to compile the data for. Because some goals will 

change over the course of the year, the tool is designed to only compile the numbers for a month once 

against on the goals as they existed for the month. To accomplish this, the tool looks at the transactions 

and the dashboard. A month is only compiled if two conditions are met. First, the month needs to over. 

This is determined by finding the highest transaction date and only compiling the data for the month is 

the end of the months is before the highest transaction date. Second, the data for the month cannot 

have been previously compiled. This is checked on the dashboard in the fields reserved for that month. 

Each month is compared against these criteria and if it meets both, the variable for the month is 

changed to true and signals later subs to compile the data for that month. 

Step 3: Create and Load the Arrays 



 The tool creates two arrays. One array holds the Primary and Secondary labels for each goal. The 

other array holds the goal amount for each goal and then a place for the actual spending for the month 

in that area. These arrays are created by reading the goals from the Goals sheet. All goal which have 

been given a goal greater than $0 are included. (Some goals have a $0 value because they are connected 

with transfers between accounts, such as using the checking account to pay a credit card. These are 

excluded to avoid double counting.) These arrays are used to compile the numbers. 

Step 4: Compile the Monthly Numbers 

 The tool then goes line by line through the transactions. If the transaction occurred in the month 

to be compiled, then it findings the corresponding label in the first array with the label names. Once a 

match is found, the value of the amount for the transaction is added the value for that goal in the 

second array. In this way a running total for the month for each goal is kept. This continues until all of 

the transactions have been reviewed. 

Step 5: Record the Budget and Expense Totals 

 The tool then adds up all of the monthly goal amounts and actual expenses for the area to 

create a grand total for the month of budget versus expenses and adds it to cells connected to a chart 

on the dashboard. The same thing is done with the annual goals. 

 

Step 6: Update Monthly Charts 



 The tool then takes each of the monthly budget goals and actual expenses and adds the label, 

budget amount and expense amount to cells connected to a chart for the months on the dashboard. The 

source data for the chart is resized appropriately for the number of goals for the month to create a final 

budget versus actual chart for the month. 

 

Step 7: Compute the Current Financial Position 

 The final step in compiling the dashboard is computing the current financial position. This 

includes the current cash between all accounts and the current debt for all accounts. Additionally, it 

includes the cash and debt by account. Finally it includes the total year to date income and expenses. 

This is computed by reviewing each of the transactions on the Transaction sheet and then adding up all 

of the inputs and outputs for each account on a running basis to create a total number. These values are 

recorded on the dashboard. Once this has been completed, the dashboard is ready to be sent out. 

 



Email the Dashboard 

 The last part of the tool is publishing the Dashboard sheet and sending it out via email to my 

wife and I. This is activated by selecting the “Email” button on the “Finances” ribbon. This occurs in 

three step, of which two are handled in VBA. 

Step 1: Publish the Dashboard 

 The tools publishes only the Dashboard sheet in a PDF. This is done by having a set print area. 

This print area is used as the guide for what will be included in the published PDF. 

 

Step 2: Create Outlook Message 

 Once the PDF has been created, the tool creates an Outlook message to be used to send out the 

Dashboard. The message is created already set with my wife and I’s email addresses, the subject line 

and the PDF attached. The body of the message is intentionally left open so that I can include in 

personal comments I would like to communicate to my wife about our finances. The tool creates the 

message and opens the email message window in Outlook. 



 

Step 3: Send the Email 

 Finally, I add my comments to the email in the Outlook message window and click send. This is 

the only part done outside of VBA and Excel. 

Difficulties Encountered 

 I encountered four major difficulties during this project. Three of the issues I encountered were 

the result of my limited exposure to that area in VBA. The last was the result of changes outside of my 

control. 

Charts 

 One of the areas I struggled with was creating charts in VBA. My original idea was to only create 

the monthly budget versus actual charts when the numbers for that month were being compiled. 

However, I had to abandon that for two reasons. The biggest was because of how publishing is done in 

Excel. The second issues I encountered was trying to create a chart based on an array. I tried several 

different options, but was not successful. After extensive research in VBA blogs and forums, I discovered 



it was actually impossible and no one seemed to be able to do it without recording the values to a cell 

somewhere. Given this, I had to follow suit and instead record my values to a cell and have those cells 

connected to the chart and only change the source data used. 

Publishing 

 Another area I struggle with was publishing the dashboard to a PDF. While it is very easy to 

publish an entire workbook using VBA, publishing just one part of one sheet is much harder. I originally 

tried to make a dynamic way to adjust the area to be published. However, I discovered that even for 

more experienced coders this was fraught with errors. Instead I resorted to preselecting the print area 

and then using the print area as the guide for what to publish. 

Creating Emails in Outlook 

 This area was only difficult because Outlook has very specific code to be used in VBA and I did 

not know what it was not was it covered in class. I had research this online to final several sites that 

could teach me how to code for Outlook messages in VBA. 

Bank Changes 

 My biggest difficulty was with changes that both banks made to their statements. I had 

completed programing the first part of the tool to load the statements only to discover that both banks 

had recently upgraded their systems and create new formats for their bank statements. I had to go back 

and reprogram the entire first part of the tool to align to these new changes. 

Learnings 

 I took away three major learnings from this project: scope creep, balancing user design and 

functional design. These learnings are less specific to VBA and more applicable to any technology 

project. 

Scope Creep 



 Scope creep is a very real thing in a technology project. I was constantly tempted, and often 

succumbed, to want to add more features to what I was doing. Often it felt like I could easily add them 

by just doing an hour more here and an hour more there. However, overtime these small additions 

added up to an enormous additional workload. Finally, I got into the habit at the end of asking “Will this 

additional feature really help me do personal finances better?” and it most cases the answer was no. In 

future projects I need to more clearly define the scope to avoid this issue. 

Balancing User Design 

 Similar to scope creep, I was often confronted with the issues of adding more time to the 

project to have a more “fool proof” tool or acknowledging some responsibility on the user’s side to pay 

attention to what I was doing. Adding safeguards to prevent users from making mistakes takes a 

significant investment in additional code. It was a trade-off I often had to think through and make. 

Functional Design 

 I did not do any extensive functional design work prior to starting to code. I had a general idea 

of how the tool should work and then just jumped in. However, as I progressed through the project this 

approach came back to bite me. I found that after getting into later parts of the tool that the way I had 

programmed other sections was a barrier to the current section. I was often faced with deciding 

whether to go back and change past sections or program around those issues. I could have avoided most 

of this and used far less code if I had done a more extensive functional design to begin with. 

Assistance 

 I used no assistance from another individual. The only help I received was from the book 

required for the class and by reviewing VBA blogs and forums. 


