
Jonathan Sánchez

VBA Project Write-up

Debt Elimination Exel-eration

Executive Summary

I volunteer teach personal finance at libraries for a hobby, and I’ve created my own program to help

others become debt free. My philosophy with debt elimination is that it is a mental game. There needs

to be motivating factors in place in order to stick to the program and become debt free. One great

motivating factor is simply the elimination of a debt. While teaching, I’ve noticed people are

overwhelmed with many different forms of debt (frequently 10+ debts per person) and sitting down and

prioritizing the debts in an elimination plan is a daunting task. I’ve decided, therefore, to automate this

process using VBA.

My ‘Debt Exceleration’ VBA project uses an algorithm that prioritizes debts in a debt-snowball schedule

based primarily on the size of the balance (90% weight), and secondarily on the interest rate (10%

weight). The goal is to motivate while also saving on interest expense where possible. I plan to distribute

this project to past, current, and future students.

Implementation

I will discuss the nature of this project in three sections: Input, Calculate, and Modify.

Input

Upon opening the program for the first time the user will immediately see a user form with some basic

information:

Debt Exceleration 1.0 (beta)

This prompt only pops-up if it is the user’s first time

opening the application. The prompt contains two

buttons: ‘Exit Application’ & ‘Let’s get started’.

Exit Application: In order to control the user’s

experience, I require them to go through the prompts.

Therefore, the top right ‘X’ on the input user prompt is

disabled. This is why the ‘Exit Application’ option is

available. When the user selects ‘Exit Application’ the

program checks if this is the only excel workbook open, if it is then it closes Excel. If other workbooks are

open, than it only closes this workbook. The workbook is intentionally not saved upon closing.

Let’s get started: Pushing this button simply moves the user to the next prompt.

The Hole

I teach that debt is a gaping hole and you need a shovel

to fill it in with dirt. The size of the hole and shovel can

vary. Thus, you will see this terminology throughout the

program.

This user form takes in the debt information from the

users. The fields are pre-populated with examples of

values that the user can input.

‘The Hole’ user form has three buttons: ‘Exit Application’,

‘Enter Next Debt’ and ‘That’s All’.

Exit Application: This button has the same functionality as the ‘Exit Application’ on the first user form.

Therefore, you may refer to the explication in the first user form. The ‘x’ on ‘The Hole’ has also been

disabled.

Enter Next Debt: The program checks to make sure the prepopulated

fields have changed before allowing the user to move to the next

prompt. If the fields are still the same, it tells the user exactly where the

problem is (see prompt on the left). Also, I limit the keyboard to only

allow numbers and decimals as input in the ‘Outstanding Balance’,

‘Annual Interest Rate’, and ‘Monthly Minimum Payment’. The ‘Due Date

Day’ only allows numbers by also excluding decimals. Any other

attempted keyboard press will result in a ‘beep’ warning.

‘The Hole’ user form also has other forms of data

validation. For example, a minimum payment

greater than the balance would not make sense.

The user would therefore receive a prompt letting

them know of the error (left).

After the data has been validated, the program checks if dynamic arrays have already been defined. If

they have not than dynamic arrays are defined for each of the values with one position in each array

storing inputted debt information. Then, because the user selected ‘Enter Next Debt’, the user form is

called again to gather information on the next debt. With each subsequent debt the dynamic arrays are

redefined with one more slot and the debt information is stored.

That’s All: By pressing this button, the data is validated one last time and the final debt is added to the

dynamic arrays. The user form closes and the next user form is displayed.

The Shovel

This final prompt takes input on the “extra”

amount of money the user plans to put towards

paying off debt. I call this amount the “Shovel”.

This user form has two buttons: ‘Exit Application’

and ‘EXCELERATE!’.

Exit Application: This button has the same

functionality as it did in previous prompts. The ‘x’

is once again disabled on this form.

EXCELERATE!: This button validates that the user entered a value. If a valid value is

not entered the user receives a prompt (left). Also, the program will only allow

number and decimals to be entered and will ‘beep’ if other keys such as letters are

attempted.

After storing the ‘Shovel’ value. The program calls a sub procedure to do all the

hard work.

Calculate

The ‘Calculate’ portion operates in three main steps: rank debts, create debt schedules, create

dashboard.

Rank Debts

The program runs my algorithm on each debt and creates a priority score which it stores in an array. All

arrays are then resorted according to the scores. After this runs, the first priority debt will be stored in

the first slot of all arrays, the second priority in the second slot, etc. This is a huge benefit to the user as I

have found that prioritizing debts is one of the main reasons people fail at trying to eliminate debt with

a debt snowball.

Create Debt Schedule

The program then creates and formats

a new worksheet in order of priority

for each debt. These worksheets

display the debt schedules with

columns for the following information:

Date, Payment, Balance, Rate, Amount

to Interest, and Amount to Principle. These worksheets are created from the information stored in the

dynamic arrays created to store the debt information. All calculations and formatting take place within

the VBA code.

The dates are done according to the minimum payoff date occuring on the payment date of each

month.

As part of the calculation process, a new array is created to capture each debt’s estimated payoff date. A

‘snowball’ payment is calculated by adding the ‘shovel’ to the first priority debt minimum payment. It is

immediately applied to the first priority debt in the ‘payment’ column. While the first priority debt is

being paid down, all subsequent debts uses their minimum payment in the ‘payment’ column. The

month following the first priority payoff date, the second priority debt then receives the snowball (first

priority minimum payment plus shovel amount). The snowball continues through all debts until all debts

are paid off.

… …

In the case where a user enters a debt that can never be paid off a new

prompt is generated. Following this prompt, the application will close

without saving, running the same sub procedure that the ‘Exit

Application’ buttons use.

Create Dashboard

The next phase is to

create the dashboard in

the first worksheet. The

program first creates and

displays the debt plan by

listing all debts in order of

priority.

Next the estimated debt

free date is displayed by

choosing the last payoff

date from the payoff date

array.

The program then

calculates the interest

spent eliminating debt if

the debt plan is followed

and the interest that

would have been spent

illuminating debt if the user only made minimum payments for the life of the debts. These numbers are

then compared to calculate the amount of money saved by following the Debt Exceleration plan as

opposed to making minimum payments.

Finally, a debt elimination

graph is created,

formatted and displayed.

This graph takes data from

all the debt worksheets

(which is a dynamic

number depending on the

number of debts the user

has). Again, all the work in

creating this graph is done

in VBA.

Modify

Once the program has created the dashboard and debt

schedule it is ready for the user. I have limited the

ribbon to only the functionalities I would like the user to

have access to which is an options tab created

specifically for this program. It has three options: Reset

Workbook, Start Over, and Update Debt Plan.

Reset Workbook: Clicking this button clears the dashboard and deletes all debt schedules. Essentially, it

puts it back as a clean slate. This button does not do anything if the file has already been cleared.

Start Over: If the worksheet has been cleared, then this button begins the prompts from the start.

Otherwise it does nothing (the ‘reset’ button must be selected prior to the ‘star over’ button).

Update Debt Plan: This button will be used in version 2.0 to modify

the ‘shovel’ size and make changes to the debts (i.e. car was sold,

eliminating a debt). Currently, if pressed it displays the prompt to the

left.

Finally, the program can be saved

and reopened for later use. Once

the workbook has been opened for

the first time, saved, and reopened

the prompt to the left will be

displayed upon opening instead of

pushing the user through prompts

again.

Discussion of learning and Difficulties Encountered

 This program uses dynamic arrays very heavily. I struggled with the loop that modifies various

dynamic arrays to store the debt values (balance, rate, etc.). This loop would run when triggered

by the button in the user form. However, since I reuse the user form for subsequent debts the

loop is used for each debt. This poses a problem because the first time through the loop the

arrays have not been defined yet and, therefore, could not be re dimmed. After struggling for a

little while on how to approach this, I found on a module of code online with various

programmed array functions such as IsArrayAllocated() that I could use in my logic to see if an

array has already been defined. Problem solved.

 Another difficulty was in creating the graph used on the dashboard. This graph has to take input

from an undefined number of worksheets and format it with the x and y ranges appropriate for

the data. In other words, the graph is completely dynamic depending on the data the user

enters. I was able to tackle this using various loops, properties, and arrays.

 One challenge that I was able to solve faster than I anticipated, but still took some problem

solving, was rolling over the debt snowball from one debt to the next appropriately when

creating the debt worksheet schedules. I was able to solve this by checking the previous debt in

the payoff array and comparing it to the date column before populating the payment amount.

 I was proud of my ability to validate information in the user forms: only allowing the user to

type certain characters into the fields, validating the inputs, and giving the appropriate prompts

so the user can correct the inputs.

 Calculating the money saved was mathematically challenging. I use various time value of money

excel functions in my VBA code along with arrays to assist with this.

 I enjoyed learning how to have code run based on events such as opening the workbook.

 Modifying the ribbon in Excel was new to me. I learned how to both hide and create new tabs

and buttons.

 I tested my code thoroughly which resulted in discovering additional challenges, such as how to

have my program avoid blowing up because a debt will never pay off.

 One challenge I did not fully resolve was creating a button in the ribbon that cleared the

worksheet and reset all global variables AND THEN start up the prompts again. I ended up

making this into two buttons with the second button needed to start the prompts up again. The

difficulty was resetting all the variables without using “END” in my code.

The above represents a sample of my challenges and learnings in building this program. I could probably

type another 3 pages on this topic.

Assistance

As I stated earlier, I loaded a module into my code in order to use IsArrayAllocated() to check if an array

had already been defined. Other than this code, the only assistance I received was from small

miscellaneous google searches that gave me direction in my own code.

