Michael Vaughn
IS 520 Final Project Report
4/14/2015

Summary

In office settings, efficiency is always a high priority. Within the Academic
Advisement Center for the College of Family, Home, and Social Sciences at Brigham
Young University, efficiency is in short supply. When [began working in the
Advisement Center nearly a year ago, I immediately recognized that there were
several processes that were extremely tedious and repetitive. Our office is utilized
mostly by students who need assistance in scheduling classes for future semesters
and who are looking for guidance in their career decisions. We have seven different
academic advisors for students to meet with, depending upon their declared major
Or minor.

One of the most inefficient processes was that of sending emails to remind the
students of their upcoming appointment in our office. The process to send just one
email was long and tedious. A student staff member in the office would click on an
appointment in Microsoft Outlook and copy the student’s BYU ID number. With that
ID number, that staff member would open a Web browser and sign in to their
account on BYU’s website. After navigating through a few pages, the copied ID
number could be inserted into a text box on the page and, after submitting that page,
the student’s email address could be obtained. And finally, a new email from MS
Outlook could be created and sent to the student reminding them of the
appointment that they have made in our office. The email that was sent was
identical for each student, just saved as an email signature to help the process move
just a little quicker.

With this project, [have been able to automate that entire process, using MS
Excel to do all of the grunt work. With the click of a button now, the calendar
appointments for a specified day will be imported to Excel and the student’s BYU ID
number will be extracted automatically. An Internet browser will pop up and
prompt the user to sign in to BYU’s website and then will retrieve the email address
of each student who has an appointment on the specified day. After collecting the
email addresses, MS Excel will call on MS Outlook to send a personalized reminder
email to each student, addressing the student by name and including the
appointment date and time. What used to take a staff member nearly two hours per
day to complete can now be done in less than two minutes.

Implementation

To begin trying to solve this problem, I needed to learn how to make the connection
between Microsoft Outlook and Excel. I found that the first step in making this
connection was to add a reference in VBA Editor. To do this, I selected “Resources”
from the “Tools” tab and scrolled to find the Object Library for MS Outlook, as
shown below.

i References - VBAProject X
Debug Run | Tools | Add-Ins Window Help
| ﬁ{ References Available References:
> I} 4 E— - 1 | Visual Basic For Applications - Cancel
—_— — | Microsoft Excel 15.0 Object Library
v/ OLE Aut ti
(General) v Mlaosléfi%afﬁ:;\ 15.0 Object Library Browse...
k v Microsoft Forms 2.0 Object Librar
option 1 Macros... G Microsoft Outiook 15.0 Obiect Lbrary 1
= VBAProject
- A il 1A 0T i forif
thlOnS... Az;ﬁsﬁsglsnt‘r‘ipe L?S;yl 0 Type Library Priority Help
| . A ActiveMovie control type library ﬂ
VBAProject Properties... AdHocReportingExcelCient. b
= = = AP Client 1.0 HelpPane Type Library
Digital Signature... AP Client 1.0 Tune |ibrarv >
<« I »

Microsoft Outlook 15.0 Object Library

C:\Program Files\Microsoft Office 15\Root\Office 15\MSOUTL.C
Language: Standard

Location:

Once this reference is added, we can use objects and methods that are unique to the
MS Outlook application. This allowed me to create my first sub procedure with the
intent to access the calendar data from MS Outlook. Because I am unfamiliar with
the objects and methods of MS Outlook, I did a lot of researching, reading and
looking for examples online from others who have done similar things. I discovered
that most people who use MS Excel to access MS Outlook must do the opposite of
what [am trying to do. Nearly all the examples and information I could find were
directed at people who were trying to take information from MS Excel and use it to
create appointments on a calendar in MS Excel. The only examples that I found that
seemed to be applicable to my desires were poorly coded and caused several
problems each time I attempted to implement similar code. Finally, it dawned on me
that I could “reverse engineer” several pieces of other’s code and have a decent
outline of my desired procedure. I was able to revamp the code and make it more
efficient several times throughout the process as [added other sub procedures and
refined my desired outcome.

This procedure, “GetCalData,” now
retrieves all the appointments
scheduled on a user specified day
from MS Outlook; if for one reason or
another MS Outlook cannot open or if
there are no appointments on this day,
a message box will alert the user and
exit the procedure. Otherwise the
appointments are arranged in
chronological order while separating

, Today

o 66°F/46°F

April 6 - 10, 2015

MONDAY TUESDAY WEDNESDAY

6 7 8 9

THURSDAY FRIDAY

10

Michael Vaughn / 12
Iumdn

Michael Vaughn / 52
Mauricio Velez/6595!

Kelly Vaughn / 9876!
I Cancelled: Kevin Vau

Kelly Vaughn / 5219
Iamened appointme | Kendal Jacobson/70(

1 David Lowe / 12345¢ David Lowe / 15470¢

-—= o < |
iD e
Get GetID GetEmail Send Send All
Appointments Numbers Addresses Reminders Reminders
Step By Step AllIn One

A 3

A8 - fe
A
Last Emails Sent: 4/11/2015 9:50:09 AM
Appointment
Michael Vaughn / 123456789 / 814-888-8888 / Stats / grad plan / MV2

Lunch

B C D E F G H 1

|Start Date |StartTime |End Date |End Time |Notes |Category
4/7/2015 10:00 AM 4/7/2015 10:30 AM Appointment
4/7/2015 10:30 AM 4/7/2015 11:00 AM Green Category

ID Number |Email Address

Kelly Vaughn / 987654321 /888-888-8888/SFL/class schedule/kol 4/7/2015 11:30 AM 4/7/2015 12:00 PM Appointment
Cancelled: Kevin Vaughn/111111111//0OBHR/graduation/sc2 4/7/2015 12:00 PM 4/7/2015 12:30 PM Orange Category
David Lowe / 1234567/801-422-1234/Stats/grad school/MV1 4/7/2015 1:00 PM 4/7/2015 1:30 PM Appointment

OlN O LB W N e

appointment details into different columns. The appointment information is
arranged in the first column and includes details about the appointment, including
the student’s name, BYU ID number, phone number, and the purpose of the
appointment. The next columns separate the date of the appointment and the
starting and ending times. If there is an extensive amount of information about the
appointment, the column labeled “Notes” will carry that information. A column
labeled “Category” is created to help filter the appointments for each advisor. Once
each column is created, the data from the MS Outlook calendar can be inserted
below. An example of what the MS Excel worksheet might look like is above.

Once we have all of the appointment information imported into MS Excel, we
want to filter out any calendar items that are not student appointments, whether
those are things like “Lunch” or a student’s appointment that has been rescheduled
or cancelled. Up to this point, our list of imported appointments contains everything
on an advisor’s agenda, but many of these will be unimportant to us. Because each of
these types of appointments is categorized differently, this program can delete any
calendar item that is not an active appointment. The program accomplishes this by
deleting all entries that are categorized as anything other than “Appointment.”

The next step of the whole process is to obtain the student’s BYU ID number.
This number is always directly following the student’s name in the appointment
information, separated from the other appointment details by forward slashes (/).
Once we have isolated what we anticipate will be the student’s ID number, we strip
it of any non-numeric characters (hyphens commonly separate several of the digits
of an ID number) and confirm that the length of the clean ID number is equal to nine.
If there is no valid ID number, whether what we have obtained is too long, too short,
or non-existent, we highlight the entire row so that the user can address those
particular cases individually. The ID number for each student is then inserted in the
appropriate row under the column heading “ID Number,” as shown below.

= DR e X

Get GetID GetEmail Send Send All
Appointments Numbers Addresses Reminders Reminders

Step By Step AllIn One
A3 v f\ Michael Vaughn / 123456789 / 814-888-8888 / Stats / grad plan / MV2

A B C D E F G H I
1 |Last Emails Sent: 4/11/2015 9:50:09 AM
2 Appointment IStart Date |StartTime |End Date |End Time INotes |Category |ID Number |Emai| Address
3 |Michae| Vaughn / 123456789 / 814-888-8888 / Stats / grad plan / MV2 I 4/7/2015 10:00 AM 4/7/2015 10:30 AM Appointment "123456789
4 Kelly Vaughn / 987654321 /888-888-8888/SFL/class schedule/kol 4/7/2015 11:30 AM 4/7/2015 12:00 PM Appointment "987654321
5

6
7
8

Moving on, we are ready to find the student’s email address. The email address is
available to us on BYU’s website now that we have each ID number for the students.
Running the next part of the code will bring us to a Web browser, where the user
will be prompted to enter their BYU NetID and password, shown at below. This
keeps everyone’s information safe, both the user and the students who we will look
up. Once the user has entered their correct credentials, the Web browser will
become invisible, but it will still be operating. The program will send an ID number
to a text box in the Web browser that allows us to search the University’s archives

for any student’s information. Once this has |« vu. o o ool vommomme | o -
happened, the program will use the HTML source |
code to locate the student’s email address. This
email address will be inserted in the proper row

BYU BRIGHAM YOUNG UNIVERSITY

K . i Sign In
under the column heading “Email Address.” At this | .,
point, the program will continue to use the | e
Password

Create a Net ID

remaining ID numbers to obtain the rest of the
email addresses. If, as in the example below, there £) warn me petoresiging me

is an ID number that does not fit the criteria of a [s

typical student’s ID number, the program will skip ey o0 e st ot oy e
this row and allow the user to inspect the entry e e e
individually. P e

For security reasons, please sign out and Exit your web browser
when you are finished accessing authenticated services!

= iD e A

Get GetID GetEmail Send Send All

Appointments Numbers Addresses Reminders Reminders

Step By Step AllIn One
A3 - i || Michael Vaughn / 123456789 / 814-888-8888 / Stats / grad plan / MV2

A B C D E F G H 1

1 Last Emails Sent: 4/11/2015 9:50:09 AM
2 Appoil IStart Date|$tartTime|End Date|EndTime|Notes|Category |ID b |Email Address
3 IMichaeI Vaughn / 123456789 / 814-888-8888 / Stats / grad plan / MV2 | 4/7/2015 10:00 AM 4/7/2015 10:30 AM Appointment "123456789 sample_email@byu.edu
4 |Kelly Vaughn / 987654321 /888-888-8888/SFL/class schedule/kol 4/7/2015 11:30 AM 4/7/2015 12:00 PM Appointment "387654321 notarealemail@gmail.com
5
6
7
4

Now that we have all of the email addresses, we can finally send an email. To send
an email with MS Outlook from MS Excel, you must pass a few parameters to MS
Outlook. First, the email needs to be given a destination, which is provided in the
last column, “Email Address.” Next, the subject line of the email must be created.
Because this will be the same in every email we send, I hard coded the subject line
into the program so that it will be constant every time an email is sent. This is a very
rigid and inflexible way of inserting the subject line, but it will protect it from
accidental user error. And lastly, the body of the email message must be created. To
do this, I typed the message on a sheet titled “Email.” The program creates this
message one line at a time so that it is formatted properly in an email message.
= DE e X

Appointments Numbers Addresses Reminders = Reminders
Step By Step AllIn One

AL - Je

1 |
2 |Dearreplace_name,

Thank you for making an appointment to meet with your academic advisor in the College of Family, Home & Social Sciences. Your appointment is scheduled to be on insert_date at replace_time. Pleas

- Please be on time. If you are more than 5 minutes late, you may be asked to reschedule your appointment
- Phone appointments are scheduled on Mountain Standard Time, so plan accordingly

4
5
6 Appointment Checklist:
7
9 - Itis your responsibly to call the advisement center at the time of your appointment

10 - Bring a list of questions for your advisor

11| - Come prepared with a tentative graduation plan to review if applicable

12| - We serve a number of students so please be mindful of the advisor’s time

13 - Students who are recently returned missionaries, non-traditional, or on academic warning/probation should expect 30 minutes for their appointment
14| - students wanting to discuss course planning, double major options, planning for graduate school, graduation questions, internship questions, questions about majors/minors, etc. will be schedt
15 - Students who have applied for graduation need to complete the process with a graduation check and should expect 10 minutes for their appointment
16

17

18

19 'We look forward to serving you in our advisement center.

20

21 |Sincerely,

22

23 |The FHSS College Advisement Center
24 |BYU-College of FHSS | 1041 JFSB | 801.422.3541 | http://fhssadv.byu.edu
25

As shown in the image above, there are a couple places in the message that need to
be edited before it can be sent to the student. We do not want to send the email
addressed, “Dear replace_name.” The Advisement Center used to send generic email
messages that were identical for everyone, addressing “Dear Student.” I felt that this
was too impersonal for the student to recognize that we are working to help and
support them the best that we can. So instead, I decided to use the appointment
information from the calendar item to find the student’s name and send a
personalized message saying, for example, “Dear Michael.” I also thought it would be
a much more effective reminder email if it actually reminded the student when the
appointment was scheduled. Rather than merely telling the student how to prepare
for an advisement session with an advisor, this new program will insert into the
email message the day, date, and time of the appointment. This information is
drawn from the imported calendar information. If [had scheduled an appointment
with an advisor in our office, the reminder email sent to me would look something
like the following:

Dear Michael,

Thank you for making an appointment to meet with your academic advisor in
the College of Family, Home & Social Sciences. Your appointment is scheduled
to be on Tuesday, April 07, 2015 at 10:00:00 AM. Please review the following
information to prepare for your appointment and have a successful advising
session.

Appointment Checklist:

- Please be on time. If you are more than 5 minutes late, you may be asked to
reschedule your appointment

- Phone appointments are scheduled on Mountain Standard Time, so plan
accordingly

Having written all of the code to perform these tasks explained above, | modified the
Ribbon in MS Excel. I created five buttons on a tab titled “Send Reminders.” When
the first button, labeled “Get Appointments,” is clicked, an input box appears asking
the user to specify the date of the appointments for which they would like to send
reminder emails to. The program then retrieves the appointment information for
the specified day. The second button, “Get ID Numbers,” determines where in the
appointment information the BYU ID number is and extracts it, entering it in to the
column labeled “ID Numbers.” “Get Email Addresses” is the third button and it uses
the ID numbers that we recently extracted to find the email addresses of these
students on BYU'’s secure website. After the Web browser opens and the user signs
into their account on BYU’s website, the browser becomes invisible and the program
loops through each of the ID numbers until each email address has been obtained
and entered into the last column labeled “Email Address.” Next, the user can use the
fourth button, “Send Reminders,” to send all of the students a personalized reminder
email from the information gathered in the previous three steps. The last button,
“Send All Reminders,” is the all-in-one option that the user has, if they would like to

import the information, get ID numbers and email addresses, and send the reminder
emails all at once. The process is exactly the same as the previous four buttons, but
has combined everything to work as quickly and effectively as possible. The only
downside to using this last button is that the user cannot interrupt the process to fix
a mistyped ID number, for example. If the user executes each step individually, the
user can manage any irregularity as it happens instead of after all is said and done.

Learning & Conceptual Difficulties

When I proposed this project to serve as my final project for IS 520, I understood
that it would be difficult, but I certainly overestimated my abilities. At the start of
the project, I would spend an hour or so at a time working and come away with
what seemed to be nothing. [knew that it was possible to access MS Outlook with
MS Excel VBA, but I was having a really hard time learning how exactly to do it. I
tried reading and studying using online sources, as well as looking for examples of
people who may have done similar things before. I was frustrated and losing hope
when my good friend, David Lowe (who was also in this same class), suggested that
[use bits and pieces from each of the readings and examples that I had looked for to
help me build the procedure that I needed. This was a much-needed outside look
that enabled me to start making progress.

Using ideas and tips learned in class, [was able to code most of the project rather
quickly. I used two sub procedures to extract the student’s BYU ID number from the
appointment information and to remove any non-numeric characters (hyphens are
commonly used to separate pieces of the ID number, but leaving these would have
caused other problems in my solution. These procedures were not identical, but
closely related to a process we made in class earlier in the semester.

One concept that was particularly difficult for me to fine tune was that of error
catching. Having a program that depends on the user acting in a specific way
requires a lot of checking and rechecking. One part of my code, when the Web
browser prompts the user to enter their BYU NetID and password, was particularly
difficult. If the user enters incorrect credentials or none at all, I was able to have the
Web browser refresh and ask again for the correct information. In the case that the
user changes their mind and decides not to enter their login information, [was able
to successfully have the program terminate and alert the user that no email
addresses were imported.

Another part of the code that is troublesome to me is dealing with the student’s
BYU ID number. If by chance the number is typed incorrectly, we could get the
wrong person’s email address, or it could produce an error saying that the ID
number does not match any student. If the ID number is linked to a student’s
account that does not have an email address, this also causes problems in the
solution. However, [was able to successfully avoid some of these concerns. Now, if
the ID number is typed incorrectly and is not linked to a student at BYU, the
program will highlight that student’s appointment information and move on to the
next appointment. If the student does not have an email address linked to the
account on BYU’s website, “No Email Address” will be inserted into the list of emails.
This caused a bit of a hiccup later as I tried to send the emails, and there were some

values in the column of email addresses that were not valid email addresses. To
overcome this challenge, 1 have the program search each item in the “Email
Address” column and if there is not a “@” symbol in the string, it will not attempt to
send the email.

Assistance

During the course of this project, I received various amounts and forms of help from
a couple different people. As I mentioned earlier, my good friend, David Lowe,
helped me by suggesting that I look at the problem from a different perspective and
that allowed me to move forward a lot. I also used David as a “sound board” because
it was easier for me to solve my own problems when I could vocalize them and hear
myself think out loud. I also visited Dr. Allen on two separate occasions. On the first
occasion, I came seeking a clarification and a deeper understanding of a class
module that was introduced to us in class. He was able to explain several of its
functions and it helped me to utilize it more efficiently in my project. The second
visit came after I struggled for nearly an hour trying to get my ribbon modifications
to work. It turns out, spelling is important when programming, especially when
trying to reference a specific procedure.

