

Implementation Documentation: Jarett Brock

 This section explains exactly what business problem had to be solved.

To fully understand what my macros accomplish, it is necessary for me to explain the model around which it is based. I

originally sat down with the Senior Financial Analyst for 3 hours while he explained this model to me, so I will do my best

to make my explanation succinct. This model is a real-estate investment model that took the finance team more than 6

months to perfect. It takes into account several hundred factors when determining the investment’s ultimate IRR

(Internal Rate of Return- a profitability measure) and the amount of money Key Property Investing will make in an

investment —i.e. inflation, average rent, financing through highly levered transactions, tiered system of debt structures,

lagging repayments of mortgages, acquisitions through non-performing loans. Here is a snapshot of some of the inputs

on the first sheet that are vital in the model.

These inputs are then used countlessly throughout the other worksheets to, with tons of iterative calculations,

ultimately calculate the total IRR. All of these numbers and equations, however, are all predicted off of the number of

homes bought each month. In the following screenshot, you can see the worksheet where the property acquisitions are

registered (they are not determined by formulas within the sheet, they are manually generated or created through

macros).

They previously had a simple macro that started at the first month, and from zero added one house at a time until they

exceeded their capital restraints or available cash for purchasing homes that month, and then they would increment the

loop by one cell to the right (which is the next month) and do it again. The problem with this was that every time a

house was added, it would take nearly 1.5 seconds for the sheet to update fully. As you can see in the worksheet above,

there were several hundred homes purchased every month. Therefore, it would take their macro an average of 2 hours

to do 120 months of property optimization—adding a house one by one by one.

 How did I fix the problem? (All of the following is found in the “Optimization” module)

The first thing I did was erase their macro and start from scratch. After a bit of trial and error, I came up with a method

that I thought would be successful at predicting the total number of homes purchased for each month. I created a sub

procedure called getAvgVal that does a very simple task. First it makes sure the number of acquisitions starts at 0 and

records the value of available cash for that month. Then, it adds one house to the spreadsheet and records the new

value of available cash—when you purchase a home with layered financing, it doesn’t simply lower it by the average

value of a home. The difference between the two recorded variables is a simple estimate of each property’s impact on

the capital constraints and available cash for spending for that particular month—that is the ultimate purpose of that

sub procedure.

Then, by taking the remaining available cash for that month and dividing it by the average property’s impact on available

cash (as calculated through getAvgVal), I generated a number that was within 1 or 2 of the true amount. If my estimate

of homes for that particular month created a scenario that exceeded our capital restraints, the macro subtracts one

house at a time until it passes the restraints—this was achieved by looping IF statements. If my estimate of homes for

that particular month was less than what our restraints allowed, than it would add one house until it exceeds the

limits—when it exceeds the limit, it uses the previous value and exits the loop. There is also a maximum number of

homes that we believe we could purchase in a month, so we never pass that value, even if money permits (that value is

stored as a variable at the beginning).

After a month is optimized, the loop is incremented and it repeats the process for the next month until the number of

months is equal to 120, because 10 years is our maximum investment horizon. This whole process occurs in the sub

procedure call “Optimize”.

Honestly, I think the code is a little easier to follow than a written explanation:

By using the timer function, I record how long it takes to run each optimization so that I could quantify to my previous

bosses how much more efficient my macro was than theirs. When previously it took 2 hours to run a single

optimization, it now takes 54 seconds on average to optimize a portfolio. This optimization can also be called through

clicking on the “Single Optimization” button in the Analysis ribbon that I added.

 How did I further use my new optimization macro?

One of the main reasons Key Property Investing wanted to decrease the amount of time it took to optimize a scenario

was because investors want to see many variations of a portfolio. They want to know best case scenario, worst case

scenario, and everything in between. The picture below shows what the user form looks like; I will then explain what it

does.

To facilitate those needs, I created a user form that performs 5 different functions.

FULL ANALYSIS

1) Run Full Data Analysis – this is where I spent the majority of my time for this project. The three variables shown in the

User Form—Cap Values, Minimum Numbers to Aggregate and Sell, and NPL % Purchase Range—are the 3 most common

inputs that private equity funds like to tinker with when determining the possible variations of the portfolio

performance. When the button is clicked and you confirm that you do want to proceed, the first step is to validate that

the ranges meet the criteria. This is done by calling the validateFullInputs macro making sure that it passes the criteria.

These criteria are mentioned in the explanation of the “Validate Inputs” button. If the inputs are validated, the

validateFullInputs macro sets the global variable “Validator”. The called procedure ends, sending us back into the main

macro where the following statement is run: If Validator = 1 Then Exit Sub. This allows for the sub to end without having

to use Unload Me or End, thus leaving the User Form open—which was my intention. Once all necessary validation is

passed, the Full Analysis begins.

The full analysis opens a new tab and names the headers for each column. The code then goes through every possible

permutation of the 3 variables within their ranges, optimizes the portfolio at each unique scenario, and then copies

down the important information (what the company decided was important) into the newly created sheet. After every

new scenario, the new data is added to the bottom of the sheet, creating a well-arranged data set. The criteria of each

scenario is listed in the first 3 columns, and then the other information follows.

2) Optimize by Upper’s Only – this performs almost the exact same task as the ribbon button “Single Optimization”. The

only difference is that upon clicking the button, it validates the upper limit values of each variable, saves them into the

model and runs the optimization. A warning box appears to make sure that you want to run the optimization.

3) Update Screen – This is a checkbox that has is implemented within “Optimize by Uppers Only” and “Run Full Data

Analysis”. If checked, screen updating will be activated during the macros. If left unchecked, screen updating will be

turned off.

4) Validate Inputs- this runs the macro to confirm whether or not the inputs are capable of being analyzed with the “Run

Full Data Analysis” criteria. These criteria include not being above or below arbitrary limits that the company decided—

the limits are in the code if you’re interested in seeing what they are. But, the important part is the following: the

chosen/or manually entered incrementation has to be wholly divisible into the difference of the Upper Limit minus the

Lower limit. This is because I used For loops in the “Run Full Data Analysis” button that need the increments to fit into

the difference of the Upper and Lower limits a perfect number of times. Also, another criteria for the full analysis is that

all combo boxes must have a lower and upper limit. If any of these criteria are not fulfilled, a message box explaining the

exact reason why you can’t proceed appears and explains how to fix it.

5) Estimate to Time to Run Full – After running 300 unique optimization scenarios, a calculated an average amount of

time it takes to optimize one scenario. Then, by taking that two times the average (it takes twice as long with everything

else that is going on in the macro) and multiplying it by the total number of permutations found within the ranges of the

3 variables. It reports that estimated time in a message box.

 Graph and Analyze Data Button in the Ribbon

When the workbook is opened, the code makes sure the Analysis Tool and Analsysis Tool – VBA are both installed, if

they aren’t, it will install them. Once a full analysis has been generated, the Graph and Analyze Data button will take the

data from the last sheet and run two separate multivariate analyses on it with the Analysis Tool in excel. It puts them

into two different tabs, naming them according to the nature of each regression. One analyzes the three independent

variables (Capp, Agg, and NPL) to predict IRR, and one uses the same independent variable to predict the total cash flow

to Key.

The next sheet, Regression of IRR

– Sheet1, provides the same

format. The only different in the

explanation in A2 and the

dependent variable that was

used to run the regression

analysis.

What I learned.

 I learned more during this project than I have through the whole semester. I ran into nurmerous problems that

really required me to think how I could solve the problem most efficiently. My first real problem was trying to find out

how I could write code that would go through all the possible permutations of the ranges defined in the user form. I

thought a lot about using 3 and 4 dimensional arrays, but I could never see the end product coming out the way I

wanted when doing that. I ended up finding the layered For lops did exactly what I wanted to do. It probably took me 4

to 5 hours of just looking at my computer screen, trying something, erasing it, and trying again before I settled on the

For loop method—but, I am proud of where it arrived. The code looks like this:

Another piece that gave me loads of trouble was validating that the Increments of the percentage variables where

wholly divisible into their ranges. That proved difficult because I used the Mod function to warn me when the remainded

wasn’t equal to zero. Where is the problem you say? The Mod function, for whatever reason, doesn’t like decimals and I

had to figure out through research that I had to multiply all those values by 10,000 to assure they were all integers.

Assistance:

The only help I received from others during this project was from various online websites that explained how to do

simple things like Downloading an Add-In when a workbook opens or finding out why the Mod function had trouble with

decimal numbers. I spent many, many hours figuring out some of the more complex ideas in this macro.

