
MBA 614 – VBA Final Project

Kaden Feller

Executive summary

Jed the owner of Polly Auto is a good friend of mine. Jed started the business a few years ago

and has worked hard to make it successful. Polly auto is a buy-here pay-hear used car lot that

specializes in cars that are usually less than $10,000. Jed finances the cars that he sells and has a

portfolio of loans outstanding. Sometimes customers stop paying and after repeated attempts

to contact them if they are not willing to pay Jed has to repossess the vehicle. After repossession

he will either work out new terms with the customer or he will resale the car. The margins are

quite high because of the high default rate and all of the costs associated with financing people

who usually cannot get financed through traditional methods. Polly Auto gets the majority of its

inventory from the Auto Auctions; however, Jed is always on the lookout for good deals on used

cars. Jed often looks on the local classifieds to try and find vehicles that he can buy and then sell

on his lot. This process can be very time consuming and we have talked about how nice it would

be to have a computer program that automatically searched the web and notified you of

potentially good deals. As I started taking VBA Jed’s problem came to mind and I realized that I

could potentially help solve his problem using VBA. I have built a program in excel that does

what Jed needs. The program I developed takes parameters about a specific type of vehicle and

goes online to the local classifieds and pulls data from cars fitting those parameters. It then pulls

market price data about each vehicle using the VIN and compares that data do the asking price.

If the car is considered a good deal an email is sent to the user notifying him of the potential

good deal and includes the link to the listing.

Implementation documentation

I used the following concepts and others to complete my project:

 Using VBA to pull data from webpages

 Using excel to send email messages

 Working with arrays for multiple purposes including to store and to access data

efficiently

 Implementing the “redim” statement to make arrays more dynamic

 Using loops to simplify repetitive tasks including for and do loops

 Passing variables between sub procedures

 Using functions to return a value

 Using user forms to collect data and use it in the procedure

 Using Len, Right, Mid, etc functions in VBA to work with and to pars text

 Writing data to and pulling data from worksheet cells

 Using public, and module level variables to access data a different levels of the

procedure

 Loading combo boxes to create options for the user

 Declaring multiple types of variables for different tasks including Long, Integer, string,

etc.

 Using VBA to format worksheets and cell ranges

 Using “offset”, “xlDown”, “fillDown”, etc in order to accomplish tasks more efficiently

This is a list of many of the concepts that I used to complete my project. In the write up I go into

detail about how this tools were used.

Learning and conceptual difficulties

I ran into a number of problems as I completed this project; however, I was able to resolve all of

the issues I ran into and I was able to accomplish what I proposed earlier in the semester. The

one problem that this project still has is that the procedure takes a long time to run because it

has to access so many different web pages and wait for them to load. With additional time there

are also a few areas where I could streamline some of the code and some of the procedures. For

example right now every time the code runs it goes to the webpage to access the data to load

the combo boxes in the user form. This takes up time waiting for the webpage to open and I

could just hard code this data into arrays to speed up the process. I have learned a lot from this

project and I anticipate using VBA throughout the rest of my career. One of the most important

lessons that I learned during this process is that pretty much anything imaginable can be done

using VBA it just takes the time and effort to figure it out.

Assistance

In the beginning of this project I received personal help from Professor Allen. Professor Allen

helped me better understand how to use the agent that he provided us with. During a TA

session I got help to understand how to use the Custom UI to modify the ribbon and add

additional buttons. In the TA session I also got help with understanding how to download an

entire webpage to a worksheet before parsing through the text.

Write up detail

I started off by trying to decide which classifieds webpage I would use to search for good deals.

I considered KSL.com classifieds, Craig’s List, and EBay. Each of these webpages has pros and

cons but I eventually went with KSL.com classifieds. KSL.com classifieds ads all follow a very

similar format which makes it easier to pull data using VBA. All of the KSL.com ads also seem to

be quite thorough and most of the ads have VIN numbers included which is an important aspect

of this project. Besides being well formatted and relatively easy to access I also know that Jed is

already using KSL.com classifieds and he will be familiar with the listings. In addition to these

reasons after investigating scraping data from eBay I get the idea that it is illegal to access

listings on eBay with a robot and I did not want to deal with any legal issues!!

After deciding which classifieds to used I had to figure out how to search for and pull the data

from each listing. I went to ksl.com/auto/ to start the search and there are a number of

parameters that can be used. I did not want to accommodate all of the options available

because it would have made this project much too time consuming and Jed does not need all of

these options for his needs. From around 30 different options I selected the ones that would be

needed by Jed and either ignored or hard coded the other parameters. For example the user of

my program can select the Make, Model, the range of years, and the area for the search. The

program searches vehicles with odometers from 0-1,000,000 miles, all price ranges, and listings

that are for sale by owner. The program ignores parameters such as how many cylinders the

engine has, and the number of doors. I did this because Jed is just looking for cars that are

selling for a good price. It also does not make sense to look at adds from other dealers and he

doesn’t care about a lot of the parameters as long as the car is selling for a good deal that he

can take advantage of.

After deciding what parameters to use I wrote code using Professor Allen’s agent code that

accesses KSL.com classifieds and searches the parameters. I did this by using the URL from the

search criteria and making it dynamic by replacing the actual values with placeholders. The user

can specify the criteria he or she wants and the KSL.com search will automatically be updated (I

will go into how the user updates these parameters later). Here is the URL before and after I

replaced the values:

Before:

http://www.ksl.com/auto/search/index?keyword=&make%5B%5D=Ford&model%5B%5D=F-

150&yearFrom=2008&yearTo=2016&mileageFrom=0&mileageTo=1000000&priceFrom=1&pri

ceTo=1000000&zip=84606&miles=25&newUsed%5B%5D=All&page=0&sellerType=For+Sale+

By+Owner&postedTime=&titleType=&body=&transmission=&cylinders=&liters=&fuel=&drive

=&numberDoors=&exteriorCondition=&interiorCondition=&cx_navSource=hp_search&search.

x=39&search.y=12&search=Search+raquo%3B

After (I have highlighted the parameters that have been replaced):

http://www.ksl.com/auto/search/index?o_facetClicked=true&o_facetValue=2008%2C2016&o_fa

cetKey=yearFrom%2C+yearTo&resetPage=true&keyword=&make%5B%5D=" & make &

"&model%5B%5D=" & model & "&yearFrom=" & yearFrom & "&yearTo=" & yearTo &

"&priceFrom=" & priceFrom & "&priceTo=" & priceTo & "&mileageFrom=" & mileageFrom &

"&mileageTo=" & mileageTo & "&zip=" & zip & "&miles=" & searchRadius &

"&sellerType%5B%5D=For+Sale+By+Owner

I declared a module level variable called “webpage” and wrote a sub that collects the

parameters writes that into the webpage and sets it equal to “webpage”. This allows me to use

“webpage” anywhere in the module to go back to the search results.

 Almost immediately I realized a problem. When the search is run the classifieds are all

presented in a list form but it is not possible to pull all of the data that I need without going to

each of the individual listings. In order to pull all of the data that I needed I had to find a way to

search each listing link and pull the data. Once I had followed that link I would need to return to

the original search results and go to the next link and on and on until I had pulled the data from

all of the listings. This represented a number of issues. First of all I had to find a way to identify

each individual link for each listing and only follow it once, second when I returned to the

original search results I had to tell the agent at what position I was in so that it could continue

the search. The first way I tried to solve this problem is by recording the agent position before

following a link and then telling the agent to go back to that same position after returning to

the search results. This worked to a degree but the result was often unpredictable and it often

followed the wrong link. I then decided to use an array to solve the problem. I wrote a sub called

“loadItemNumbers” that goes to the search results webpage and finds out how many listings

there are and then finds and writes all of the listing numbers to an array called “itemNumbers”.

“itemnumbers” is a module level array so that once it contains the item numbers I can use it

anywhere in the module.

Once I have the array of item numbers I can use it to more easily find the links and follow them

and I don’t have to keep track of what position the agent is in. I used the agent

“followLinkByHref” sub to accomplish this. Below is the code that demonstrates how I combined

the root URL with the listing number and then followed the link. The code also shows how I used

the number of listings to make my for-loop dynamic based on different search results.

Once I followed each link I wanted to pull certain data and write it to an excel sheet. The sub

searches certain criteria such as the title, price, and year and writes it to the Outputs sheet of the

open workbook. It also includes a for-loop that uses a preloaded array (called “specs”) to pull

data from a table in each link and write it to the sheet.

The function “getSpec” is the procedure that actually pulls the data from the listing and returns

it as a string variable. This function tests the data so that if the value is left blank or not specified

it returns “N/A” instead of returning gibberish:

I wrote a sub called “writeData” that writes each item of data to the sheet. I pass two variables to

the sub “writeData” which are “data” and “item”. “item” is the name of the variable such as Title,

Price, Mileage, VIN, etc, and “data” is the information collected about that specific listing such as

“2013 Ford F-150”, “$35,000”, “26,500”, “1FTFW1EF3DKG29838”, etc. The sub “writeData” finds

the item in the sheet and writes the data in the next available line below it. To make this sub

dynamic I had it go to the end of the column and then “xlup” to ensure that I would write data

to the next empty cell.

After the program loops through all of the listings, collects the data, and writes it to the

worksheet I wanted to check the listed prices to find out if they are a good deal. To check the

values I used a webpage called “cargurus.com”. On this webpage car values can be looked up

based on VIN numbers. I wrote a sub called “checkValue”. “checkValue” starts by loading all of

the VIN numbers into an array called “autos”. It does this by writing the VIN numbers that are

already in the worksheet to the array:

The sub “checkValue” uses the “autos” array to insert the VIN onto the end of the root webpage

which searches Car Gurus for the prices. At this point I ran into another problem. The webpage

pulls up the data just fine but the source code does not actually include the prices so I could not

use the previous method of “a.getText()” to pull the data. I ended up importing the entire

webpage to a worksheet in excel called “data” and then parsing through the text to pull the data

that I needed. I used the right, mid, and len, funtions to parse through the final text. Below is a

screen shot of Car Gurus webpage. I pulled the “Market Value”, “Trade-In Estimate”, and the

“Great Deal Price” and set them equal to the module level variables: “market”, “trade”, and

“deal”.

In order to allow for errors in the case that the VIN is wrong or not available, I used two if-

statements. One if-statement ensures that there is a value, and the other ensures that the data is

in the right format. After the data has been error checked the outputs worksheet is activated

and the data is written into the appropriate cells.

After all of the data has been imported I wanted it to look presentable and understandable. I

wrote a sub call “formatCells” that takes care of that. The “formatCells” sub’s primary function is

to make the data more understandable. The first thing the sub does is format all of the headings

as bold and underlines the entire row. The sub then highlights the data and auto fits columns so

that all of the data fits in the cells. Once that is done the price and mileage data set are

highlighted and data bars are added.

After the existing data has been formatted the “formatCells” sub adds formulas to compare the

classified ad list price to the market data. It does this by adding ratios in three columns titled: %

of Market, % of Trade in, and % of Great Deal. In each of these columns the list price is divided

by each of the respective market measures to come up with a percentage. After the ratios have

been added the cells containing the ratios are formatted to contain color scales and an icon set

to indicate which of them represent the best deal. Below is a snapshot of the spreadsheet.

As can be seen in the above picture I added a button to the spreadsheet which runs the

procedure. I also added a button to the ribbon that does the same thing.

When the user presses either of the buttons a user form appears allowing them to select the

options that they want. For most of the fields I used combo boxes. I did this so that there would

be less likelihood of the user inputting a value that would not work with the code or the URL.

The Make, Model, Year From, Year To, Zip, and Search Radius fields are collected and spliced

into the URL to generate search results. Because of this I wanted the options to match the actual

options that KSL offers. To do this I wrote a sub that goes to the KSL Auto Classifieds page and

pulls the data, loads the data in to arrays, and then loads them into the combo boxes. I have

attached screen shots that show the “fillComboBoxes” sub which loads the data into the combo

boxes, and the “loadComboBoxArrays” sub which gets the data from the webpage and loads it

into the arrays. The user form allows the user to input a threshold for receiving notifications and

the user’s email where they want to receive the notifications.

After all of the code has run and the data is in the worksheet and formatted correctly the

procedure runs a sub that checks each of the ratios. If the ratio is below the threshold the user

specified an email is sent to the user including a short message and a link to the listing. The user

can then follow the link and investigate further.

Conclusion

This project has taught me a lot and I am excited to see how this program will function in real

life. I am sure that there will be additional work that needs to be done to make this more robust

and better streamlined; however, I am happy with the results up to this point. I have enjoyed

applying the concepts learned in class to this project and I look forward to continuing to apply

these lessons to problems that I will encounter throughout my career.

