Automated Sales Tax Calculator

David Prescott
ISYS 520

Brigham Young University

Executive Summary

For the past year, | have worked in the accounting department for an alarm
installation company and I have been responsible for sales tax reporting. The alarm
installation company installs and maintains low-voltage alarm systems. They
partner with major alarm companies to install and service alarm systems in all 50
states. We have to file and pay sales tax in every state and by doing so are required
to report our sales for each county in those states.

Filing sales tax is a time consuming process and each year we would spend more
than 400 hours to completely file sales tax. For this project, [set out to automate the
entire sales tax process to save time and improve accuracy. By using VBA I have
created an automated calculator that has already proven to be very efficient. By
implementing it in the last month, we have already seen a significant decrease in the
time spent on sales tax. | am expecting that we will be able to lower the filing time
down from days to hours each month and even reduce the total time spent on sales
tax to less than 90 hours annually. This calculator is already reducing the time by
more than 75% and is going to save the company more than $4,500 annually.

The purpose of the automated sales tax calculator to organize the company’s sales
data, calculate the amount of sales and deductions in each state and county, and
display the results effectively to make filing sales tax significantly easier. The
calculator is an asset to the company and has been dynamically developed in case of
any changes to our system or changes with state tax laws. Therefore, allowing it to
adapt to changes as they are made.

Background

Sales tax is a tax that is required to be paid on the sale of a good or service. Every
state has different filing periods that are monthly, quarterly, bi-annually, annually
and/or at other arbitrary periods. Each state has tax laws that differently define
what items are taxable. For example, categories in the alarm industry, such as
personal property (equipment), and labor (service or install) are taxed differently
according to each state.

Generally, the seller charges the customer for sales tax and then pays that to the
state. The seller in this situation is the company I work for and is considered a third
party contractor and does not ever directly charge the customer. We instead, charge
the partner company sales tax, who then charges the customer. Since we are the
party who provides the equipment and labor and charge the contracted partner
company, we invoice the majority of companies for the sales tax and file the sales tax
amount. There are some companies who give us tax exemption forms, which means
that we don’t charge them sales tax and they become 100% responsible.

We use a software system called SecurityTrax to track and maintain all of our data
pertaining to sales, payables, receivables, billing, etc. Each month, we download to
Excel the desired time period from SecurityTrax and then go through each state and
company and identify which companies are tax exempt, what are the state tax
requirements, and where we did business. Previously, we would then have to use a
rudimentary calculator to do basic lookups of certain criteria, but would have to do
all the filtering and calculation manually. It was a long process that on the months
we would just filed monthly returns; it would take one or two people about three
days to complete. The quarterly filings would take seven to six days and for annual
returns we would have three people working solely on sales tax for about eight to
nine days. That adds up to more than 400 annual hours spent purely on sales tax.

Problem:

The problem I set out to fix was two-fold. First, reduce the amount of time to
calculate, file and pay sales tax and second, improve accuracy of calculating sales
tax. The second issue is important because if there is a difference between filed and
invoiced amounts, the company loses money and we have to spend time adjusting
future invoices.

Solution:

1) Istarted with cleaning up the front end of the Excel workbook by eliminated
unnecessary columns and hiding certain columns to make the sheets easier
to navigate (there were originally 70+ columns). This work was mainly done
on the Calc worksheet. The previous format wasn’t conducive to running a
macro, so [prepared the worksheet by editing formulas, organizing columns,
and fixing multiple mistakes in the calculator. By cleaning up the front end of
the workbook, it is now capable of running a macro to calculate and display
the results.

2) lfirst created a reporting worksheet and reporting table so the user can
enter in the desired states needed to file sales tax (image of table is below). |
considered using a user form but I found that using a table would be the best
option for this project due to the fact that the user can simply copy and paste
the monthly states or quarterly states into the table. Also the states change
their filing periods quite frequently so it is best to give the user the flexibility
to manually enter in different states for each period or the ability to perform
other state tax calculations throughout the year. Additionally, we have
another workbook that has all of the state login information, and filing
periods so it is convenient to copy and paste information into the table.

States To File Abbreviation{Automatic)
Utah Ut
Idaho ID

3) NextlI created a sub procedure called SalesTaxTFN that loops through the
states on the sales tax table (example of Utah and Idaho in the image above)
to create new worksheets with the state name. After a worksheet is created,
the macro pulls all of the state specific data from the calculator on the Calc
worksheet and places it into the newly created state-named worksheet.
There is a worksheet that is now created for each state that needs to be filed
that has all of the information to calculate sales tax. | have also included data
validation tools to ensure that the states are spelled correctly as well as
prevent duplicate entries. One part of the code uses the state abbreviations to
lookup the tax criteria for that state and stores them as variables for later use
to look up taxability criteria. Below is the code that loops through the table,
creates a new worksheet and creates a sales tax calculator for the state
specific information.

4)

5)

For Each stateName In statelist
If stateName = "" Then Exit For
s.Range ("al") .EntireRow.Copy
With wbToAddSheetsTo
.Sheets.Add after:=.Sheets ("Reporting”)
On Error Resume Next
ActiveSheet.Name = stateName.Value
ActiveSheet.Paste
Range ("A2") .Select
Application.CutCopyMode = False
On Error GoTo O
End With)
For x = 1 To ¢
If s.Cells(x, StateCol) = stateName.Offset (0, 1).Value Then
s.Cells (x, StateCol) .EntireRow.Copy
Worksheets (stateName.Value) .Select
If ActiveCell = "" Then
ActiveSheet.Paste
ElseIf ActiveCell <> "" Then
ActiveCell.Offset (1, 0).Select
ActiveSheet.Paste
Application.CutCopyMode = False
End If
s.5elect
End If
Next
Next

Next, I created a sub procedure called Calc that calculates the state gross
income, exemptions deductions, install, service and equipment deductions, in
order to find total deductions, taxable amount and total amount invoiced.
The Calc sub procedure first loops through each state’s tax requirements for
each category (Install, Equipment, and Service) and saves those values to be
referenced in later code. Every state requires filing at the state level and so I
created nested If Then statements, and For Loops to calculate the total
exemptions for each category, depending on the state’s tax requirements.

The If Then statements would search to see if the category is taxed, and if so
it would then look to see if there are any exemption forms, and if not it would
go through each line and sum the total amount for that category. It would do
this for total deduction categories: exemption totals, equipment totals, install
totals, and service totals. The macro would go through each line and calculate
the totals, store them as variables and then display the results on the right
side of the worksheet (image below shows results of step 5).

After calculating the state filing amounts, the sub procedure Counties
calculates tax for each specific county by calculating gross sales, deductions,
and total taxable amount. [used an array to select unique counties from the
counties column and then calculated gross sales, deductions, and total
taxable amounts by using For Loops and If Then statements. When filing
sales tax, states require companies to report the overall state and each
jurisdiction totals of gross sales and deductions, and then the state website
calculates a tax payable amount. On the right side of the image below are

displayed results of this step, and shows each unique county and its specific

amount.

Gross Sales $7,912.76 County Gross Sales Deduction Total Taxable
Co-Exempt Total $5,899.77 Utah 997.8 997.8 0
Install Deduction $300.00 Salt Lake 324286 3038.87 203.99
Service Deduction $1,305.00 Washington 226482 2060.82 204
Equipment Deduction $0.00 Iron 573.36 573.36 0

Total Deductions $7,504.77 Weber 95 95 0

Total Taxable $407.99 Davis 232.52 232.52 0

Tooele 506.4 506.4 0

Amount Invoiced $26.73

6) The last step was to customize the ribbon to make it easy for the user to run
the automated calculator. By using Office Custom UI editor, I customized the
ribbon to have a Sales Tax tab and have two underlying buttons: Sales Tax
and Delete Sheets. The Sales Tax button is linked to sub a procedure that
automates the calculator and displays the
results in each created state worksheet. The HOME
delete sheets button deletes all sheets except
the necessary calculation sheets (Calculator,

Reporting, Exemption Forms and Zip Code Tax

Rates) in order make it convenient to clean up

the workbook and delete unnecessary state SalesTax DeleteSheets
sheets. The ribbon helps the worksheet look

more clean and professional and it adds to the
accessibility of running the macro. Sales Tax Calculator

Learning and Conceptual difficulties Encountered

A difficulty I faced was that the downloaded file column locations changed in the
middle of my project and will continue to change in the future. I had originally used
columns locations as references (K:K, A:A, etc.), but realized I needed to reference
the title of a column. Regardless of the column changes my code is dynamic and will
reference the columns and ranges, which hold specific names such as State or
County. After trial and error [found that I could run a loop to name each column

based on the first cell in that row and then I would reference that named column or
range for that worksheet.

However, the biggest difficulty [encountered was creating an array for unique
counties and then using the data in that array to perform other calculations such as
gross sales, deductions and taxable amounts. [am a novice at using arrays and it
took a long time to conceptualize what I needed to accomplish. It was difficult to
construct the entire configuration of the code to work properly because there are
several criteria to meet and I had to use multiple For Loops, If Then statements,
embedded For Loops and embedded If Then statements. I used my course book as a
reference and built the array. The image below shows the building and use of the
array and the final outcome.

For Each stateName In stateList

If stateName = "" Then Exit For

s.Range ("al") .EntireRow.Copy

With wbToAddSheetsTo

.Sheets.Add after:=.Sheets ("Reporting”)
On Error Resume Next
ActiveSheet.Name = stateName.Value
ActiveSheet.Paste
Range ("A2") .Select
Application.CutCopyMode = False
On Error GoTo O

End With|
For x = 1 To ¢
If s.Cells(x, StateCol) = stateName.QOffset (0, 1).Value Then

s.Cells (x, StateCol) .EntireRow.Copy
Worksheets (stateName.Value) .Select
If ActiveCell = "" Then
ActiveSheet.Paste
ElseIf ActiveCell <> "" Then
ActiveCell.Offset (1, 0).Select
ActiveSheet.Paste
Application.CutCopyMode = False
End If
s.5elect
End If
Next
Next

Primarily, I learned that I can actually create sub procedures to solve business
problems. Although I need to continue practicing and improving, I feel that I have a
strong basis of VBA principles that I can use to create automated solutions/
programs for business, and personal use. I learned how to efficiently use arrays,
object variables, For Loops, If Then statements, nested If Then statements and VBA
syntaxes.

Assistance

[completed the project my self and did not receive substantial assistance. [used my
course book (Albright, S. Christian. VBA for Modelers) to better understand and

correctly using VBA syntax. [used the Internet to understand any errors I
encountered.

