
David Lowe

ISYS 520 Sec. 01

Executive Summary

Account withdrawals and deposits, whether they be personal or business, are tracked by

banks. If withdrawals are made with debit or credit cards those transactions are listed with the

place where they were charged as well. Although most banks give information on where the card

was used and how much was charged, many do not categorize the expenditure into personal or

business budgets. Sorting through these transactions can be tedious and time consuming, especially

if it needs to be done weekly or monthly. This program is designed to automate the majority of the

process of categorizing transactions taken from bank statements. With this organizational system

small businesses and individuals can easily extract their transaction history from their online

account, choose budgeting categories, automatically categorize and sort transactions, and show

monthly and running totals in spending for each category and the amount of disposable funds. By

using this system the user can be more aware of where their money is going and can find more

efficient ways to allocate income.

Implementation

 The excel workbook we are using is designed to not only work on short term transactions,

but to be cumulative in its analysis. Therefore the more time this workbook is used, the more data

is collected and our analyses become more and more accurate. The workbook is set up to organize,

categorize, and analyze the data on a few different sheets. These sheets include, “Budgeting” (main

analysis), “Monthly Totals” (all categorized transaction history for the month), “Running Totals”

(all categorized transaction history up to the present), “Deposits” (all deposits made to the account

up to the present), “Withdrawals” (all withdrawals made from the account up to the present),

“Transactions” (all transactions up to the present), and “Imported Data” (temporarily used data

taken from the web query).

Signing in/Data Collecting/Sorting:

 The first step in this

process was extracting the

data from the online account.

This required the use of the

agent class variable that

allows for ease of access into

web browsers. This is

connected to the “Wells

Fargo” ribbon tab, “Sign in to

Wells Fargo Account.” When

clicked the web browser

opens up the bank account

web address (in this case the

Wells Fargo account entry page). At this step we need to enter the username and password of the

account. This is done using a userform. Because we need to use the information put into the

userform, this entire portion of web searching is done within the userform. The userform requires

a valid username and password for a Wells Fargo account. The password text box uses the

“PasswordChar” function to hide the characters entered.

Once submitted the form enters the given data

into the Wells Fargo sign-in page and allows access to the

account. With the agent class variable we access the link

labeled “Account Activity,” which provides the last 90

days of transactional history on the account. The agent

class variable then is able to copy the entire page and

download it into a sheet named “Imported Data.” If the agent cannot access the Wells Fargo

account then there will be no new information in the “Imported Data” worksheet and the macro

will return an error box requesting re-entry of the username and password.

If the account is validated and the information was accessed then the “Imported Data”

worksheet will contain the raw data file of the webpage, including a lot of superfluous information.

To reduce the data into a useable form the macro uses a “do loop” to delete any row that does not

have a date character in the first column. The only data on the page that provides dates in the first

columns are the actual transactions made, which is what we are interested in. Once the desired data

is the only thing left on the page the macro runs another “do loop” and a counter to see where the

data in the “Imported Data” coincides with the first row of the “Transactions” worksheet. This row

represents when the last update was made on the transaction history. The macro then deletes that

transaction and all transactions before that transaction to leave “Imported Data” with only new

data. Seeing as this workbook is designed to give monthly expenditures and income, it will be run

at least once a month and would not surpass the 90-day transaction history limit. If the deadline

were to be surpassed the macro would leave all of the transactions available for use from that 90-

day period. In the case that there is no new information from the online transaction history then

the macro stops, leaving the workbook just as it was.

With the new data found in the “Imported Data” worksheet we will be able to organize the

data into “Transactions,” “Deposits,” and “Withdrawals.” Conditional “do loops” insert each

transaction row in chronological order from “Imported Data” into their respective worksheets

depending on the column position of the dollar amount of the transaction. Now each of the

worksheets, “Transactions,” “Withdrawals,” and “Deposits,” have the updated transaction history

from the online account.

Categorizing Transactions:

 Now that each transaction has been sorted we need to categorize each withdrawal to form

the budget. This can be done using the “Categorize Transactions” tab in the “Wells Fargo” ribbon.

The first process is reducing each transaction description to only needed information by using an

instr() function to take out superfluous information. In the “Withdrawals” worksheet we can use a

userform that is programmed to help categorize transactions. This userform is programmed to look

for matching descriptions of transactions and when a category is already assigned to that

description it will automatically fill in all similar transactions. When no matches are found the

userform allows you to pick a category to place the transaction in. After each transaction that is

categorized it checks to see if any matches are found for that transaction in any other uncategorized

data and will fill in any matches

automatically. This makes the

process go much faster,

especially when the program

has been used over time and the

majority of transactions are

repeated at one time or another.

The userform is designed to

allow the user to move forward

backwards and is defaulted to

skip to the next transaction that

has not been categorized. It also

has error proofing built in to

require every transaction have a

defined category.

Creating Budgeting Statistics/Visuals:

 Once all transactions are sorted we can use

the “Analyze Transactions” tab in the “Wells

Fargo” ribbon to insert each transaction into their

respective categories in the “Monthly Totals” and

“Running Totals” worksheets, where information

can more easily be used. This allows the macro to

find the totals for each category and compare them

to the monthly and running total spending and

income. With simple formulas created in the macro

the “Budgeting” worksheet shows the percentage

of spending for each category, along with a

percentage of income being saved. This applies on

both the monthly totals as well as the running

totals. The running total percentages act as an

average benchmark for the monthly percentages to

be compared to. It also shows this graphically by

creating pie charts that show what portion of the

users funds are going where.

Learning & Conceptual Difficulties

 The first problem I encountered was not knowing the full capability of the agent class

variable. I worked by myself quite a bit before turning to my brother for help in understanding its

functionality. Once I better understood it function and how to implement its capabilities it was

very easy to take information off my account. The main problem I faced with this project is that it

has a lot of different moving parts with the data. Probably due to inexperience I spent most of my

time cleaning up the data to be useable. There seemed to be countless little and almost

unperceivable issues with the loops I was creating to sort the data and transfer it to other

worksheets. I received help mostly in debugging the code to find the little errors that were causing

my code to run sometimes and other times not.

 This project taught me the capabilities of the userform in much more depth than I had

before. I also learned how to simplify several different problems in the data to one common

solution. Much of my time was spent finding better ways to complete the task what I was doing. I

began to see a lot of inefficiencies in my code that I could fix and it cut down processing time quite

a bit. Some problems that seemed complex and above my ability to do, like the automatic

categorization, turned out to be some of the easiest fixes with VBA. I also learned how to recognize

and create protection against errors in my workbooks and code. This was an invaluable skill to

learn because it made the last half of my project much more productive and efficient.

 Once the data had finally been reduced and sorted how I wanted I began to think constantly

about things that I could do to make relevant statistics for my bank account. I implemented a few

with the running total average and the percent of savings, but there are many different ways to

make this project even more useful. Due to time constraints I didn’t apply all of them but this is

definitely a project that I will continue to refine in the future. I didn’t feel like I gave up on any

ideas, rather I am brainstorming how to make them work. I am very aware of future questions I

will want to answer with this data.

Outside assistance

 While much of my code I was able to reason through myself, there were definitely parts

where I needed some guidance. Because I was so engrossed in the problem, I often needed my

brother or my cousin’s help to recognize little issues with my loops and conditional statements.

The internet was a huge resource for me to replicate processes and fit them to the needs of my

project. I often found syntax and simple solutions on the internet that made my project run easier

and more efficiently. The “record macro” tool in excel also helped me create a few charts and learn

how VBA accounts for many of the simple tasks in excel. The help I received I feel was very

beneficial to me and I feel that when I received help I was then capable of doing it myself. The

learning curve is pretty steep still but it is good to know that I know how to resolve my problems

in VBA.

