
Audit Sampling Project Write-up
A VBA project completed by David Burgess

Executive Summary
Sampling can be a difficult and tedious task for auditors performing an independent audit of financial

statements. Oftentimes the process of choosing a random sample and checking the values can become

biased as auditors have to make the selections themselves. Using an excel spreadsheet and visual basic

for applications, I have automated the process of choosing a random sample, comparing the amounts

with audited values, and ultimately recommending an opinion on the account being audited.

As an auditor for the Utah state auditors and for Deloitte, I could’ve used a program that automated this

process in a completely unbiased way. While the solution I have provided is a simpler example, the same

process could be used for more complicated sampling procedures. In this write-up, I will attempt to

explain the basics of a sampling procedure, how my solution will be implemented to make sampling

easier, and what I learned by going through this project. I hope to be able to use what I have learned to

help me when I start with Deloitte full-time in September.

Using Sampling to Perform an Audit
To understand how my solution works, a basic understanding of how sampling is used in the auditing

process is necessary. First, an auditor will plan the audit and set certain parameters for each account.

The auditor sets a limit on how much the account can be off, called tolerable misstatement, and

estimates how much misstatement and standard deviation they will find as well. A confidence level is

chosen, and then the sample size is calculated based on these parameters and the total population size.

Second, the auditor generates a random sample and compares the sample items to an audited value

that is verified by the auditor. Finally, the auditor can use the amount of misstatement in the accounts

and projects it to the rest of the population – producing a confidence interval that must be within

tolerable misstatement for the account to be accepted by the auditor.

Solution Walkthrough
The solution I have provided starts with the assumption that the auditor has access to some financial

data, and the “Sample Data” tab has 600 account balances (randomly generated) to simulate this

process. This tab contains a dynamically named region with data that can be changed as the auditor

changes to a different account. The three main steps in the solution include the following:

1. Input Parameters

2. Enter Audit Values

3. Export Results

Step 1 – Input Parameters
In the custom ribbon named “Application Tools,” the auditor will start by clicking on the “Enter

Parameters” button which opens the form frmInput. The following screenshot, exhibit 1, shows the

form.

The user enters the parameters of the account in each text box and chooses a confidence level from the

dropdown box. If the auditor put the information in correctly, clicking on “Generate Sample” will begin

the next step in the process.

Step 2 – Enter Audit Values
The Generate Sample button should have inserted the correct number of rows, generated a random

sample, and then pulled the account balances from the Sample Data tab based on the sample item

numbers. The next step for the auditor is to compare the audited values with that of the book values for

each sample item. Again in the Application Tools custom ribbon, the auditor will select “Enter Audit

Values” to pull up the following form, called frmValues in the code.

For each sample item, the auditor will enter the verified amount, which will sometimes be slightly

different than the book value, and then click next to proceed to the next sample item. The program

automatically finds the difference in values and squares the value in the next column. On the final audit

value entered, the program will finish the math required to determine the results of the audit. The

following screenshot shows the Results tab, which summarizes the output as projected misstatement,

confidence interval, tolerable interval, a graphic comparison of the confidence interval compared to

tolerable, and suggested recommendation (which uses a text manipulation formula to return an official

auditors opinion on the account.

Step 3 – Export Results
The final button in the Application Tools custom ribbon is the Export Results button. This button opens a

form, called frmEmail, that takes the necessary information for exporting the results to a pdf and

sending that pdf to a specified email. The following screenshot shows the form.

The form takes a username, password (with hidden symbols), send to email, subject, body, and a name

to save the file under. Clicking “Attach Results and Send” will use the information in the form to export

the file to a pdf and then send that file with a subject, message, and attachment to the specified email

address. With the results pdf as documentation, the auditor can then proceed with the audit. For more

on how the code works to perform the solution, see either the downloaded spreadsheet or the

Appendix section on “Important Code Segments.”

Learning and Conceptual Difficulties

Learning
In creating this solution I learned a great deal in how to implement a solution for an auditing process

through VBA. First of all, I was actually surprised by how easy it was to create a form that quickly and

professionally automates the process of entering values into the program. Using forms and procedures

that run the behind the forms, I feel like I can automate any process and really impress my superiors. I

also noticed how easy it was to create a customized ribbon that runs those forms.

Difficulties
I encountered difficulty when I was thinking how I could import the data to the spreadsheet to begin the

sampling process. The problem is that the financial data could come in a wide variety of ways. Some

data will be in a pdf, some on an online database, some data may just be printed out, and some data

might just be in another spreadsheet. Ultimately, I decided this part of the process was outside the

scope of what I wanted this project to do and made the assumption that the auditor can get the data

and put it in the Sample Data tab. I checked with Professor Allen and he verified the scope of my project

before it was finished.

Most other difficulties encountered during the course of this project involved me just making a silly

mistake that was hard to find in the debugging process. Once I found the error, I felt really stupid for

making that kind of an error in the first place. However, as I got closer to finishing the project I realized

that I was making far fewer errors and could find and correct any errors faster than before.

Assistance
To complete the project and get past certain roadblocks, I did ask for a little help from the TA.

Specifically, he helped me get my emailing function working correctly and helped me finish customizing

the ribbon. I also used a source from the web to learn how to export a file as a PDF. The sendGMail code

is almost directly from the in-class example, but any assistance only amounted to having a few trivial

questions answered, and all of the rest of the code in the program is written by me.

Appendix: Important Code Segments

This code generates the

required number of rows in for

the sample.

These segments run behind

the enter parameters form.

This code will send take the

email information and export

the file and send it.

This program will enter audit

values in the Enter Values

step.

