The Address Organizer
Created by Crista Hill

Executive Summary

Project Description

The Address Organizer is an address management tool that sorts addresses based on
information needed, automatically emails address requests, and generates envelopes using
Microsoft Word Mail Merge.

Pain Point

Every time | have a sibling get married, they complain about how long they spent mailing
wedding invitations. My sister manually typed each address on a word document in just the
right place on the document so the envelopes would print correctly. My brother, after spending
an entire day working on envelopes, frantically emailed me late into the evening the day he was
printing envelopes, asking for help because he couldn’t get it to work. Though | explain the Mail
Merge process to them, this process is not intuitive and usually requires significant
reformatting of the work they’ve already completed.

Solution

Whenever | have a sibling announce their engagement, this spreadsheet will be my first
wedding gift to them. It will help them collect and organize their addresses. Sending envelopes
will require a mere click of a button.

Features

The organizer is designed to be very intuitive. There are no instructions along with the
spreadsheet. All of the features are performed either automatically when the user clicks on a
spreadsheet, or by clicking a clearly labeled button located in a visible area on the worksheet
where the button would be needed. For example, the contact updates are completed with a
form that automatically appears when a user clicks on the data. To add new contacts, the user
clicks the “New Contacts” button that is located in a very visible area on the worksheet.

Create new contacts using a Userform

Update contacts using a Userform

Identify contacts that “Need an Address”

Identify contacts that “Need an Address and an Email Address”

Identify contacts that have the needed information and are “Ready to Mail”
Email an address request letter to contacts on the “Need an Address” list
Create envelopes using Mail Merge

Detailed Feature Description

Create New Contacts Using a Userform

The Userform allows new contacts to be created quickly and easily. The Userform is designed to
ensure that new contacts are listed in the next available row regardless of where the active cell
is located when the user clicks the “Create New Contact” button located on the “Master List”
worksheet.

7 5
Contacts Li_:hj
Record Number: 9
Firat Laat
|
|| | I
1
|| Street ||
1

1 I

City State Zip

Email |

PIlD]'lE |

Previous ‘ Save & Continue Remove From List

e

Figure 1: Contacts Userform

The Userform assigns each contact a record number based on the row where the contact will
be located and includes fields for the contacts’ Name, Address, Email, and Phone. When the
user clicks “Save & Continue”, the new contact will be saved on the next consecutive row under
the existing data. The user can scroll to previous contacts using the “Previous” button, or
discard the changes either by clicking “Remove From List” or simply closing the Userform
without saving.

Update Contacts Using a Userform

Contacts can easily be updated with the Userform. When the user selects a cell that already
contains data, the Userform shown above will automatically show and the user can change
information and select “Save & Continue”. The user can also remove contacts from the list by
selecting “Remove From List”. This will delete the row where the contact is located and move
the other contacts up to remove the space. The Record Number cannot be changed and is
directly related to the row number where the contact is located. If a contact is deleted, the
Record Number for contacts below will change. All contact edits must be made on the “Master

List” worksheet. If a user tries to edit a contact sorted to another sheet, the user will see a
message box that says, “Please make all contact edits on the Master List”.

[=] * 5 Fine Froject - Lize | R]
IOME IRSCIT SATELAVOLT TORMULAS DETR RLDW MW | DOULLOPLR | FORERRLOT oM
] |—. *kzcare Mera é& |_: 9{ (V4 [#eparis E Map ressme Poampers |
“! [Euse 2emive Reterences = Ve Cece g e Ipott .
Weasl Koanae fabiclis, TN et Desive G [
sie 1 Haera Semw iy fee ri = Made |3]%unDialog ot
S fed [wa [-
Al - fx v
A F { F ¥ 1 (X]
= Huord Mumbes FirsL M L Maanye CH’
= : CEm
l.lor__n:\, Fallon F== ¥ozrth AT R
¥ Uriat IR -1t
ke IRl
LBuey KL Frou Creae Dnveluze:
S Iy Fillua Frcu B
Tzbrar 102z Areas SaltZshe Ctr
7 Lurhar I
e e M= diar L | -1 o

FENESTCREESn 40w ko

Master List nasd Addracs Meed Fral Andress ard fddress Spady w0 Wai i Al 3

Figure 2: Master List worksheet

Identify Contacts that Need an Address

In order for the user to know who they will need to collect addresses from, the contacts must
be sorted. This is accomplished automatically when the user selects the worksheet titled “Need
Address”. This list is updated each time the user selects the sheet. Because the contacts can
only be updated on the “Master List” worksheet (all other worksheets are password protected),
this list should always be up-to-date when the user is viewing it.

B . Tina Froject - [ece. T P AN
HOMD TEORT SAZELWGLT TOTMULLAS DATN RDICW YIW] Cnsta i -
oo Wach = = Supert
r—|_ a -E!? | M g.'o:er = rHﬂ
= . = e o .]
waal Wasras Adding LUM s Lieacr s sourze
ERY ! kil tode (L] 2 Sty -
Coo ACCIE Zorttels EML Wodiy ~
Al - I v
A 3 C o 4 r C [1)=
- | Hreard Hambar Fiirst Hama |t Hamn limail 1'hane: Hombar imai
I Hoen il 1200 195-5300 Tat o
1Bicazy - 1333) 3006333 Tect e e e
1 T Mrrasr *I Tet L IR
pi}
i
|
13
5
a
B
l
o
£
Mester Lt | Maed Addrems | Need Crar hooress ard Address Reeoy to Mail ®]

Figure 3: Need Address list

Identify Contacts that Need an Address and Email Address

The Address Organizer will automatically email contacts that need an address, however the
user will need to know which contacts don’t have an address and will not receive an email
request. These contacts are sorted onto the “Need Address and Email” worksheet. The user will
need to contact these individuals through another medium (phone, Facebook, in person) in
order to get their address. As with the “Need Address” worksheet, these contacts are sorted
automatically when the user clicks on the sheet. Because contacts can only be updated on the
“Master List” worksheet, this sorted list should always be up-to-date.

L] ¥ = HnziFropzet sie

LoRT T
4

AT | EOTRETET Loalaby

Mol Lol | Muwdadthi,, Heed Emil Address and Addross | deadv b p1 el

Figure 4: Need Address and Email Address List

Identify the Contacts that Have the Needed Information and are Ready to Mail

The Address Organizer will automatically create envelopes for contacts that have the required
information. The list automatically populates when the user selects the “Ready to Mail” worksheet. As
with the other lists, these contacts can only be updated on the “Master List” worksheet, so this list
should always be up-to-date while the user is viewing the list.

mid s Foewed sl Sl e Ruady ta Mail

Figure 5: Ready to Mail list

Email an Address Request Letter to Contacts on the “Need an Address” List

The “Need Address” worksheet includes a button called “Email Address Request Form”. This
automatically sends the following email to the listed contacts:

Johnny,
| need your address. Please send it to me so | can get it added to my list.
Thanks,

Crista

The User can customize the letter by modifying the text file in the same folder as the Excel file.

Once the email is sent successfully, the Organizer will population the field “Email Sent” with “Sent” &
Date. This will also populate on the Master List so that the information will not be lost when the user
selects a different worksheet.

Create Envelopes Using Mail Merge

The “Ready to Mail” worksheet has a button called “Create Envelopes”. When the user clicks this
button, the program will automatically open word and create envelopes for each contact in the “Ready
to Mail” list. Because the button is located on this worksheet and contacts can only be updated on the
“Master List” sheet, this list should always be up—to-date when the user clicks the button.

The Mail Merge file defaults to a 3 5/8 inch by 6 % inch envelope.

F H = Form Lerersl Word T S AR

AUF AR TEFRT LESIGH PARE | AT FFFFSEMCFS RAAN TS 2PN VIFW ATMS Crata Hill =
Y — 83 iR s REe RSy o Z #hFre -
- - - | Py = - = . . & A S L
M Calibwi Rodyl =11 =| & & Aa S-E-e FF R Y e Assbeus AsBbcr seskcar AGBI naseo sssuooe Asbe: = | 8 tesince
i i '
P-*"-l= & comatpainge BT U dn ok fi- F-p-B- - B S T Murmal | T Mo Spac., Hesdiogl Heading 2 Tille Sublitle fuvieBm Bmphai =g oo

Civsuzis Kl Funil i Faraurau i £l Slyles El Edilinyg kY

h-org Tallien Frivm I
Fallon St Puthonay Tin

b Vanrk, oy hE Halbmtar, £4 577

Tk ln-nny Cask
FLE TNE Fstiorn War Lt

Sl L ey A 1S 2a Haibpvimad, 184071

MGELOF4 FTwoins [2 9

Discussion of Learning

| discovered that learning to program is a lot like learning a language. There are infinite possibilities as to
what you can do with code, but you have to know how to say it. The most difficult part of the project for
me was knowing that something could be done, but not knowing the exact coding language that needed
to be used to tell the computer what to do.

The Mail Merge part of my project was something that we had not done in class. | looked online to find
examples of how to create this code, and found many examples, all of which were different and hard to
understand for a beginning programmer. By studying the different code, | was able to piece together
something that | thought should work, but | kept getting errors. Finally, after a lot of frustrated
attempts, | took the code to the TA. He showed me that | had mixed up the Application with the
Document and was trying to tell the Application to do something that only a Document could do.
However, once we got this figured out, we still could not get the Mail Merge to run successfully.

| returned home and studied the examples closely, and running the code step-by-step decided it must
be failing at the SQL line. After some creative Googling, | discovered that the SQL line needed to be
written with brackets around the named range — which was not clear in ANY of the examples | had
studied online. Once | added the brackets to the code: SQLStatement:="SELECT * FROM [Data]", my mail
merge finally completed. | do not know of another endeavor where missing brackets can cause you
hours of headaches.

| also learned the value of adding code at the worksheet level. | knew that | wanted my lists to sort
automatically so that the worksheet would be very intuitive and the lists would always be up-to-date. |
didn’t want the user to have to remember whether or not they had sorted the list since last updating the
contact information. In order to do this, | learned how to add code to the worksheet level so that

whenever the user clicks that worksheet, the list automatically updates. However, this required that |
also really think through the layout of the program. If the list only sorts when you click on the
worksheet, then it’s important that the user can’t push a button expecting the list is up-to-date unless
the button is located on the worksheet with the list the button uses. Thinking through all the possible
actions of the user and what the consequences could be is the most important part of programming,
and in order to do that properly would require hours of testing by various users to ensure that all
possible scenarios had been tested.

Another example of needing to think through the actions of the end user is Contact Updates. As | was
writing the code, | realized that my list sorted the Master List by making a copy of the data on new
worksheets. However, if the end user tried to update the data on the new worksheets, all of that data
would be lost. | had to add protection features to these worksheets to ensure that all edits were made
on the Master List. Had | not thought through this potential error, the end user would likely make
updates throughout the workbook and would end up very disappointed in the results of all their hard
work.

| also learned that it’s important to consider whether a feature will be useful, or if it will just cause
additional work for the end user. | had originally planned to include a feature where the user could
import contacts from Gmail. However, when | ran a report showing all the contacts from my gmail
account, | found that there were over 700 contacts, most with duplicate entries. Most of the contacts
were not people | would send any kind of invitation to — many were not even people —and | decided
that the user would likely spend more time cleaning up this list than they would creating a list on their
own. So, | decided that including this feature in the project was not worth the time or the effort.

However, | also learned that programming is never really done. There are many different “tweaks” the
end user could request and many unforeseen problems that could occur after more testing. Maybe | will
find that users really would like an importing feature and that | should add that. What | have created is
the beginnings of a code that will grow and evolve over time to create additional features, make it more
user friendly, and ensure against failure.

