
“To Itemize or Not To Itemize- that is the question”
By

Calvin Smith

Executive summary

Every year millions of individuals and households are required to file an income tax return.

However, much of the general public is unaware of how to optimize their tax return. Tax filing

services, automated or provided by an accountant, can be expensive and time consuming. From

my experience as a VITA (Volunteer Income Tax Assistance) volunteer for three years, I’ve found

that one component of the tax return that can be especially time consuming is determining if it is

more beneficial for the taxpayer to itemize deductions or to take the standard deduction.

Navigating Schedule A (Form 1040) can be a frustrating experience, even for an accountant.

Finding relevant tax guidance that corresponds

with each line item and calculating phase outs

and limitations can be extremely time

intensive. As a result, individuals who may

be better off itemizing their deductions often

take the standard deduction to avoid the

frustrating and confusing forms.

My VBA project provides an easy to use

calculator that not only determines which

method (stardard or itemized) will be most

beneficial for the tax payer given their

specific situation, but also provides

instructions and guidance to help the tax

payer enter the correct inputs into the

calculator. The VBA project essentially

walks the user through all potential

deductions from Schedule A and applies the

relevant calculations to determine the amount

the user can itemize. Then, the program

compares the total elgible itemized

deductions against the standard deduction

and recommends most beneficial method

(standard or itemized) of tax filing.

A second potential application of this

calculator exists. When tax payers are considering making a major tax planning decision that will

impact how they itemize, like whether they should rent or buy a home that will have tax deductible

interest, users can run a variety of scenarios to see how that tax planning strategy will impact their

itemized deduction. The IRS does not require tax payers to pay more taxes than they are legally

obligated to pay. The purpose of this project is not to promote tax evasion, but to help taxpayers

structure their financial decisions in a more tax efficent manner and more easily utilize available

deductions the IRS has made available.

SCHEDULE A (FORM 1040)

Implementation documentation

Design and Layout of User Interface and Supporting Inputs: The first component of the

implementation required that I create an interface with which the user would interact with the

program. I wanted an interface that could be used by inexperienced tax payers, but be recognizable

by sophisticated users. For these reasons, the user interface follows a pattern that reflects the

structure and line items on a Schedule A (Form 1040).

I decided against creating a form based

application so that more experienced users to

easily insert formulas and calculated values

into the calculator as well as perform side

calculations on the same page as the

program. Ease of use or functionality are not

impaired by my non-form approach and no

excel formulas are used in the cells that form

my calculator. Using VBA to automate this

process rather than formulas in cells has the

advantage of making the calculator more

robust for inexperienced users. The use of

VBA allows simple operation of the

calculator and generates a clear answer to the

question: “Should I itemize?”

Because I wanted the calculator to be able to

be easily modified between tax years with

new standard deduction rates and new

information, I created a supporting

information tab. This tab allows someone

without VBA experience, but some tax

experience, to quickly update key inputs like

standard deduction rates and line

description/help information. This prevents

this calculator from becoming obsolete once

tax season is over.

After volunteering with BYU’s Volunteer

Income Tax Assistance lab for three years,

I’ve found that one of the most significant

challenges for tax preparers filling out IRS

forms is understanding what goes in each

box of the form. To address this issue, I

designed the form with help buttons that immediately bring the applicable tax guidance for the line

they need help with into the calculator. This tax guidance was drawn directly from the IRS website

which provides instructions for filling out Schedule A 1040. This allows users to view tax help as

they need it and prevents users from having to look up the guidance themselves and having to tab

between the tax guidance and the calculator.

The last component of the user interface worksheet is the

personal information box. As I looked into Schedule A, I

found that a taxpayer’s age can impact how deductions are

calculated. To make sure users enter valid inputs, I

implemented sheet level validity checks to ensure that

information would transfer to the VBA variables correctly.

Because a tax payer may not readily understand filing statuses available, and because I did not use

a vba form, I utilized a drop down menu to ensure the taxpayer or user knows the available filing

statuses and to ensure the filing status entered is valid before the VBA code is executed. I opted to

use a drop down menu rather than an ActiveX combo box because the user may not have ActiveX

controls or software enabled on their computer. The use of a traditional excel drop down box

ensures a more seemless user experience for more users.

VBA Implementation: The core value that

my VBA implementation pivoted around was

understability and future proofing. I know

that tax laws change over time and with those

changes my calculator will need to change in

order to stay relevant to the tax year in which

it is used. I wanted other VBA users to be able

to understand what my program was doing, in

what order, and why it was doing it without

the extensive use of comments or a

sophistocated user guide. For example: The

numbers of the variables in the code correlate

to the number line both in the calculator and

on a Schedule A for understandability

purposes. For example: “one” in sub medical

is line 1 in the calculator user interface and

line 1 in the Schedule A. This patter carries

throughout the calculator.

While I designed the standard deduction and help information to be easily updated year to year,

the rest of the mechanics of the Schedule A are built into the VBA of the calculator. While the

mechanics of the VBA will not be as easy to adjust as the standard deduction information and help

information, the structure of the main code in module 1 should be readily apparent to a novice

VBA user.

The update sub runs the entire calculator and is organized according to the structure of the Schedule

A 1040. The update sub is triggered by the user pressing the “Should I Itemize?” button. The button

was labeled this way to prevent confusion regarding how the calculator should be initiated.

Variables are defined at the start of the sub and formatting is applied. The sub then executes subs

that correspond to the calculations required by each section of the Schedule A. The subs are given

names that relate to the sections on the Schedule A so that another user with some understanding

of Schedule A and VBA experience can easily identify and make required adjustments from year

to year. After the required calculations are performed, the sub provides the answer to the question

“Should I Itemize?” in a message box, answering “Yes” or “No.”

Descriptions of what each of the components/subs do in the calculator are listed below:

*Please note: Some Totals will not carry through when you run the calculator depending on

your input values. THIS IS NOT A FLAW OR ERROR in the VBA code. Some tax benefits

are not realized in the itemizing process until certain calculated thresholds are reached. In

some cases Total lines for a category will show ZERO even though expenses are entered in

the related category.

Sub filingstatus: Sub filingstatus looks at the valued entered for filing status and retrieves the

corresponding standard deduction value from the “Supporting Information” tab and drops that

value into the Total itemized deductions section of the calculator so the viewer can compare their

calculated itemized deduction against their standard deduction. This item is retrieved from a table

on the “Supporting Information” tab because the user may not readily know what their standard

deduction may be given their filing status.

Sub medical: Sub medical looks at the year of birth

information captured in the update sub to determine

if standard deduction rates apply to medical

expenses. Different tax rules apply for individuals

who either are born before 1950 or have a spouse

they are filing with that was born before 1950. This

code looks at the years during which the taxpayer

and spouse (if applicable) were born to determine

which taxpayer is oldest and if the oldest person was

born before 1950. Without getting too tax technical

in this write-up, I’ll just say that the appropriate rates

are applied according to age. The amount you can

itemize from medical expenses is limited, so a

calculation is applied to lines one and three to

provide line four and line four is limited to positive

numbers. If the calculated threshold is not

exceeded, no tax benefit is realized. The numbers

of the variables correlate to the number line both in

the calculator and on a Schedule A for

understandability purposes. For example: “one” in

sub medical is line 1 in the calculator user interface and line 1 in the Schedule A. This pattern

carries throughout the calculator. The last lines of sub medical return the calculated values back to

the calculator so the user can use them.

Subs for taxes, interest, and gift: Sub taxes, sub

interest, and sub gift are all simple routines

because the expenses incurred by these amounts

paid is not a limited itemized deduction, so the

VBA in these subs simply adds the values

preceding the total line to calculate the line total

value. The addition takes place in a loop that

collects the number values from the applicable

cells an adds them to a running total held in the

nine variable.

Sub job: Sub job is related to the “Job expenses and certain miscellaneous deductions section of

the calculator. These expenses are limited itemized deductions, up to 2 percent of adjusted gross

income. This code takes the module level variable, AGI and applies the appropriate rate to

determine the extent to which job expenses and miscellaneous deductions are limited or deductible.

If the sum of the deductions in this

category does not exceed the

threshold, no tax benefit is realized.

The existance of these kinds of

expense/deductibility limitations is

one of the reasons why itemizing can

be so difficult to determine. From my

experience in BYU’s Volunteer

Income Tax Assistance lab, I’ve found

that most tax preparers do not

understand how limited deductibility

works on the Schedule A. This

calculator takes care of this

calculation for the tax preparer, and

prevents the preparer from deducting

nondeductible portions of job or

medical expenses. Without these

calculations in place, many tax

preparers would likely deduct more

than is permissible by tax law and

incorrectly determine that it would be

more beneficial for them to itemize

when they shouldn’t.

Sub total: Sub total simply adds all the sub totals to create an unadjusted itemized total. This total

can be further limited by additional adjustments depending on the taxpayers AGI in the limittest

sub, discussed below.

Sub limittest: The limittest sub is one of the most complicated calculation sections of the VBA of

this project. I wasn’t able to fit a screen shot of it on this page, so look at my VBA if you want to

see it. As far as VBA coding goes, it is not complicated, but the combination of calculations and

tests it performs were complicated to implement together. In short, this code determines if the

amount the taxpayer wants to itemize is limited. To create this code I based my code on a PDF a

worksheet the IRS provides tax preparers to determine if the itemized amount is limited. I followed

the calculations on the IRS worksheet and coded them into the limit test. The limit test looks at a

variety of inputs provided by the user earlier in the calculator to determine if the itemized deduction

is limited, and to what extent it is limited if it is limited.

Sub yesno: the yesno is a simple sub that

determines for the tax preparer if they

should itemize or not by comparing their

itemized deduction against their standard

deduction. The only complication in this sub

arrises from the fact that the user’s itemized

deduction may be limited, and that

limitation must be taken into account in

determining if the user should itemize or

not. The nested Ifs are necessary in this

process because of the variability between

scenarios in the instance that the deduction

is limited. The calculator breaks out the

itemized deduction in terms of limited and unlimited so the user can see if a higher AGI is causing

their itemized deduction to be limited. If I did not break out these two items, the nested if

statements would be unnessary.

Learning and Conceptual Difficulties

Organization and coding process: Beyond the projects I created for class, I have not had any

experience writing VBA for large projects. The most significant thing I learned while doing this

project is how to take an idea for a project or finished product and break it into parts for the building

process. My first instinct was to build the entire project into one sub procedure that would run.

However, the more I looked at the Schedule A, the more I realized I could break the project into

several different sub procedures that could be independently tested implemented. The Schedule A

provides several natural breaks for sub procedures with each section requiring its own calculations

depending on the limits, phase outs, and requirements in place. After walking through the manual

calculations required for a Schedule A, I settled on using my current code structure. From this

project and organization process, I learned that a deep understanding of the underlying function or

process you are trying to automate is a significant contributor to VBA project’s success.

After I determined the best way to organize my project code, I started coding. I learned how to

effectively organize and step through VBA processes by tracing the manual process. The manual

process as directed on the IRS Schedule A and supporting worksheets, though tedious, was fairly

efficient. While I coded this project, I learned that I could recreate the manual process with code

fairly simply with a few significant exceptions. After a few failed attempts to optimize the code

beyond the manual process the IRS had set forth, I realized it was unnecessary to reinvent the

Schedule A calculation process with code. While this may not be true in every VBA application

and automation of manual processes, coding the manual processes into VBA turned out to be the

most efficient and accurate way for me to complete the project.

While coding in VBA I often found that the simplest methods created the best results. For example:

I experimented with a variety of ways to bring supporting help information to each line. I tried

bringing the information in using a text box, pasting the information with a text box, linking the

information to the relevant line values, and copying and pasting the information with code. I found

that the simplest method, recording myself deleting previous content, copying the relevant

information, and pasting it in the correct location provided me with the best results. Now my 18

help buttons work reliably and consistently paste relevant help information. Although I was

disappointed I wasn’t able to get other data retrieval methods to work as well, I’m glad I found a

reliable solution. Copying and pasting the help data from the Supporting Information tab allows

users to edit the help and support data with additional help information and updated tax advice

without needing to have a knowledge of VBA. Lowering that bar for usability makes this tool more

accessible to more people, which will hopefully contribute to greater implementation success.

Coding difficulties: The most difficult part of the project for me to code was the sub limittest. I

almost didn’t build this section of the project because it only applies to the top 5% of tax payers,

payers who would likely be using a tax professional rather than this tool, but I wanted to make my

deduction calculator robust. This section of code was difficult because the IRS itemized deduction

limitation test requires quite a few inputs that can vary depending on the taxpayer’s unique

situation. I had to create code that could take each unique situation into account. I ended up using

six “if” statements and one case select statement to deal with all the complexities that accompany

the phase outs and different filing statuses involved in the itemization limitation calculation.

Once I finished the code, I checked for accuracy by manually running the same calculations using

the IRS’s form for the test. I had to adjust my code seven times to make the code provide the

correct values and provide a limited itemized deduction from an unlimited itemized deduction

input. Although few people may ever require this function, I feel proud of being able to make such

a complicated piece of code work properly and knowing that my calculator would be able to

provide an accurate itemizing estimate, even in those unlikely conditions.

Making the calculator with multiple applications that is adjustable: One of my most important

objectives with this project was creating a project that could be used by most people and a project

that could have multiple uses. I learned that by making a few adjustments to my VBA project I

could make my project have multiple applications. My project not only helps people determine if

they should itemize or not, but has the capability to help people plan tax efficient financial

transactions. For example, someone contemplating buying a house could see the effect the

purchase would have on their itemized deduction. By entering the estimated deductible interest

payments from their proposed home mortgage, they can see what tax benefit they might receive

from owning, rather than renting a home. Another tax planning application may be a family trying

to determine the effect a charitable contribution will have on their taxes owed at the end of the

year, or determining to what extent their medical expenses will be deductible if they itemize.

I also learned how to make sure my VBA project would be useful to a third group of people. While

this project will help users plan tax efficient financial actions and determine if they should itemize,

this tool will also help individuals to fill out an actual Schedule A should they decide to itemize.

Once the user has used the help functions to fill out the calculator and used the VBA subs to

calculate phase outs, limited deductibility, and the total itemized deduction; the user has all the

information they need in an easily transferable form to complete a Schedule A. One of the benefits

to structuring the user interface like a Schedule A is that novice and advanced users alike can

readily transfer the calculators’ input AND output values to an IRS Schedule A. This makes

preparing an itemized deduction much easier. I anticipate some users who already know they

should itemize may use this form to help them fill out the Schedule A for this very reason.

The last thing I learned conceptually was how to make a VBA project more adjustable and future

proof. While hard coding values into VBA may be sleeker in executing the code and viewing the

workbook, dynamic values allow for a calculator that will remain relevant longer. For example: I

could have hard coded the standard deductions and help sections in VBA for 2014, but instead I

created an information tab that allows users without any VBA experience to adjust these values

between tax years. Adding this functionality helps future proof my project.

Assistance: None other than PDF IRS schedules, worksheets, forms and instructions

I received no assistance with this project from professor, student, or otherwise except from the

IRS website. By providing PDF forms, schedules, instructions, and worksheets relevant to

itemizing deductions, the IRS website was immensely helpful. From the IRS forms I developed

my user interface, from the IRS instructions I built my understanding of the underlying processes

and problems, and from the IRS worksheets I was able to step through calculations which would

have been incomprehensible without additional IRS clarification.

