

VBA Final Project Report
Brittany M. Coon

Executive Summary

 For my project, I was automating parts of a Quality Assurance (QA) Checklist for my

work. The QA Checklist is very long and those who go through it often do not thoroughly check

everything. My project automates some of the checks and identifies errors and potential errors. It

does not change the data; it just highlights it so that the person who is validating the data can

learn from the errors to avoid them in the future. The data goes array by array when it is running

its checks. This is important because it allows us to identify which arrays have errors more

easily.

Implementation documentation

 When building my solution, I added my macros to an existing file that contains other

macros. The user form was already built and it had its own tab on the ribbon. I added to what

was existing to stay consistent with the current way the existing macros are used.

The 15 checks I automated are in the following table:

Task Description Reason Included

Drive Count and Capacity are formulas If these are not formulas, then the drive count

and capacity of the array can be off.

Additionally, it affects the software licensing,

so if it is incorrect it can cause the licensing to

be wrong.

The Drive Count of mapped Symmetrix,

VNX, Celerra/NAS, Clariion and Centera

TLAs matches SYR Reported Drives

SYR is a dial-home site we use to validate our

data. Checking the total drives against what

SYR reports can alert us to a potential error or

discrepancy.

VMAX TLAs are not missing Enginuity

licenses

Enginuity is the OE license for Symmetrix

arrays. Because of this, it is required to be on

the array. We need to ensure that it is there.

VNX 5500+ and all even-numbered TLAs are

not missing Performance and/or High

Capacity licenses

Performance and High Capacity licenses are

the OE licenses for VNX arrays. However, a

few models do not require them. We need to

identify where it is missing, but not skip

models that don’t have them.

Storage-based TLAs have Min # of Drives

and Total Slots specified

Most arrays are storage based so they have

drives and capacity. These need to have a

minimum and maximum number of drives

specified.

Only TLA records have Min # of Drives and

Total Slots specified

Only the top line in the array should have

minimum and maximum drives specified. If

the other lines have it, it can cause errors.

The Drive Count for storage-based TLAs is

between the Min # of Drives and Total Slots

The drives on the array need to fall within the

minimum and maximum number of drives. If

it doesn’t fall in that range, it can be a

configuration error or an indicator that

something is incorrectly associated.

Each array map has the same New TLA Serial

Number

This helps with grouping the array correctly

in the final deliverable.

SW Install Dates do not pre-date the TLA's

Install Date by more than 4 months

Software should not be installed more than

four months before the hardware. If it is, this

needs to be noted and validated.

The TLA SO Date pre-dates or is the same as

the SO Date of any upgrade SOs

The sale of the original array needs to occur

before the sale of any upgrade. If the upgrade

occurs first, it can be an indicator of incorrect

association.

The earliest Install Date pre-dates or is the

same as the SO Date for each SO

The purchase date needs to occur before the

install date. If it is installed before it is

purchased it can be an indicator of data issues.

Unit of Measure is filled in, consistent with

Model Numbers and accurately reflects

Model Descriptions of TLAs and SW

Having Unit of Measure correct is important

because we use it to categorize how software

is licensed.

Software Type is filled in, consistent with

Model Numbers and accurately reflects

Model Descriptions

The accuracy of Software Type is important

because we use this for grouping similar

software and determining the licensing in our

final deliverable.

Drive Type is filled in, consistent with Model

Numbers and accurately reflects records

containing or not containing drives

Drive Type accuracy is important because we

use it to classify drives and calculate the

capacity of the arrays.

Count is filled in with 1 Our conversion macros will not work if this

isn’t a 1 so this aids in those working.

 I have included some screenshots of the data before and after I run the macros. Then, I’ll

explain where the errors are and how it is fixed.

 In the above spreadsheet, there are errors in the rectangular bars. Most of the data is

incorrect but some is missing. The top-left box is flagged because those values should be greater

than zero. The two with a line connecting are incorrect because the values aren’t matching. The

next three columns have boxes where the data is incorrect. The next two columns have missing

data and inconsistent values.

 In the spreadsheet pictured above, you can see there are additional issues above including

drives that don’t fall between the minimum and maximum drives, drives on non-TLA lines, and

missing OE Licenses. There are other issues that are present in the first picture; they weren’t

highlighted again here.

 In this spreadsheet, there are a few issues. The first is the missing OE license for VNX

arrays. The other issues all relate to the dates. Some software was installed more than four

months before the hardware, some components were installed before they were purchased, and

some of the upgrades were purchased before the main array.

 Following are the process for running the macro and the same sheets after the macro has

been run. You will be able to see highlighting and additional notes. The macros do not change

any of the values for a couple of reasons. The first is we need the person who created the data to

analyze the data and learn from their mistakes. Second, we need them to validate that the macro

found a real error and take appropriate, sometimes complex steps to fix it.

 To run the QA Macros, the user goes to the Macros tab and clicks the open user interface

button. Next, they go to the Prep tab of the user form and then they click the QA Mappings

button. After the macros are run, a dialog box appears informing users of the things that the

macro has done and what they mean.

 The next three screen shots are the same section of the workbook that was captured

previously. They show what the worksheet looks like after the macro has been run. If any

changes are made and the macros are run again, the highlighting will be removed and issues that

still exist will be flagged.

 Here the issues are highlighted in green. The missing minimum and maximum drives and

missing count are highlighted. Additionally, data that appears incorrect, such as the unit of

measure, software type, drive type, and array serial number are highlighted for review. Finally,

the difference between the dial-home information and the total drives is noted.

 The following screenshot shows an additional issue with minimum and maximum drives

not on the TLA line. Additionally two notes were made in the QA column, one for the missing

OE License and the other for the discrepancy with the drives not falling between the minimum

and maximum number of drives.

 On this screenshot, the errors in the data have been highlighted. Additionally, notes have

been made for the missing VNX OE License, and notes have been made for the date problems

identified.

 One additional note, certain model families have arrays that have capacity and arrays that

do not. Because there is too much diversity in the model numbers the potential errors are

highlighted in blue, which should signal a need for closer examination and review.

 One final thing to be aware of is the macro looks for the break between the arrays to

function. It doesn’t matter how many spaces are between the arrays, it will handle it. The macros

also stop running once it reaches the end of the mappings because the last row was defined at the

start of the macro.

Lessons Learned

 The major thing I learned was how difficult it can be to make a robust program. In the

past, all programs I created had a pretty well defined input and expected output. However, for

this project, my macros have to be able to handle a variety of different data correctly. It was a

challenge thinking of all situations that commonly occur and how to handle them. I also learned

more about the code we already have existing; it was interesting incorporating that code into

what I was creating. I changed how I was doing a couple of things to handle the existing code

better. The final thing I learned was how the project can change as you develop i t. Originally, I

was planning on having several QA macros that you went through step-by-step. However, the

way I set up my project allowed me to do them all at the same time without having an issue. I

wasn’t expecting the project to end up being structured the way it was, but it ended up being the

most efficient way to do it.

Assistance

 I received some assistance from one of my coworkers. Because this is for work, I built

my project in a workbook with other code. We have class modules already built that we can call

on. My coworker pointed some of them out and had me change some of my code to include

them. This increased efficiency and reduced the number of things that are hardcoded. He also

helped me with some of the logic of the project. I would talk to him about what I was planning

on doing and how I was going to do it. He would point out any flaws in my logic or potential

errors I might hit. After I finished coding, he tested it and pointed out a few errors he

encountered and I fixed them.

