
Bailey 1

Benjamin Bailey

Brigham Young University

MBA614 Spreadsheet Automation

14APR2015

FINAL PROJECT

EXECUTIVE SUMMARY

The relevant business for this project is one with continuous, repetitive operations - such as a

manufacturing line or distribution center - without frequent, large variation. This type of

business is one where the current state value stream can be measured as few as one to three times

and still be sufficiently accurate as a baseline for making significant improvements in the process

(a.k.a. system or product line).

The tool built for this project is called a Value Stream Compiler. It enables an observer to use a

touchscreen tablet device running Microsoft Excel to quickly and efficiently capture the

sequence of steps that constitute the business process of interest as well as the average time per

unit for each step. Understanding this sequence and the time spent performing each step

facilitates identifying process constraints (i.e. bottlenecks and cycle time), imbalances in labor

standard work, and opportunities to apply Lean principles to reduce non-value added work (i.e.

waste). In essence, quickly understanding the current state of a process value stream is the

crucial foundation to making improvements that benefit the system as a whole. This helps to

avoid making supposed improvements to a portion of the process that have negligible or even

detrimental net effects on the larger system.

SYSTEM IMPLEMENTATION

This compiler tool consists of a Microsoft Excel workbook containing three types of sheets:

Instructions, Data Gathering, and Totals & Chart.

A. Instructions

 *Provides step by step guidelines for using the tools

*Defines abbreviations used in the tool

*Provides tips to ensure various elements of the tool are used efficiently and consistently

Bailey 2

Figure 1 – Instructions Sheet

B. [Data Gathering] (e.g. ProductLine1, ProductLine2, ProductLine3, etc.)

 *Where process steps & times are recorded by buttons embedded at the top of the sheet

-The buttons are located on frozen pane rows so they stay visible when scrolling

between process steps and times recorded below. I could alternatively put buttons

like this among the Excel header tabs instead on frozen pane rows, to avoid

messing up the width of the buttons when I resize column widths.

Figure 2 – Frozen Pane Macro Buttons

-These buttons are linked to VBA Subroutines (macros). When the observer

judges a new step has begun, they decide what type of step it is (e.g. Manual,

Dwell, etc.) and press the corresponding button to record the step type as well as

the current date & time (i.e. a time stamp) on the next available process step row

regardless of which cell is currently active

-There is a separate button for each activity type. Each button records the current

date and time in order to calculate time elapsed. However, each button records its

distinct activity type as well as the most likely quantity of units processed, the

time per unit per operator, and the time per unit per machine (dwell device).

~Info: operator documents the process or communicates information

 ~Setup: operator sets up the workstation so ready to process units

 ~Manual: operator is actively engaged in processing a unit

~Dwell: the unit is processed automatically without operator engagement

~Idle: the unit neither moving to next station nor having value added to it

Bailey 3

-It does not matter which cell is selected on the sheet, when you press an

activity type button, it will automatically record the current date and time (time

stamp) in the next available process step row, automatically calculating the time

elapsed since the start of the previous step

-There are also numeric and operator buttons for making manual edits,

typically in the Time Elapsed field, to override inaccuracies due to:

1) missing entry of an intended time stamp,

2) picking up where leaving off the process from a previous day, or

3) a need to adjust how many units, operators, or machines were involved

for the time period elapsed

The reason we have these buttons is that it’s faster, with fewer touches, than using

the Windows virtual keyboard. I think this idea of squeezing out seconds out of

computer interactions certainly adds up over time and more importantly, it makes

things easier on the user. Very small increments of time can be the difference

between an enjoyable user experience and a deterrent that discourages using the

item at all.

-For any given process step, it is important that the Value Stream Compiler

captures the number of units, operators, and machines (of 1 type) so that the

true capacity of the process can be compared to Takt time

-There is a “New Row” button for easily inserting a new row for a process step

that was missed earlier or for breaking process steps into smaller segments. This

was coded so as only to work below the frozen pane and to automatically populate

several of the fields in a convenient manner.

-A good question to consider is why not video record the process of interest

instead of using this tool? Video recordings of an operation are useful. They

allow you to take your time in measuring a value stream precisely. Videos can

serve as a common, unchanging lens if there are disagreements about standard

times. On the other hand, if you video record a process, you still need to transfer

your observations from the video into a spreadsheet to organize the data. If there

are many steps in the process, the video can take a long time to watch and record

your observations. The Value Stream Compiler can be used that way if high

detail is desired. Usually, however, using the Value Stream Compiler to record

the process sequence and times directly from observation, instead of from a video

recording, should be sufficiently accurate. Using the Value Stream Compiler in

this manner also enables speed and flexibility in moving back and forth through

many processes in a much shorter time. Plus, tablets are less intimidating for

operators than video recordings.

C. [Totals & Chart] (e.g. ProductLine1Chart, ProductLine2Chart, etc.)

 *Where process times are summarized into operations and totals for building a chart

Bailey 4

Figure 3 – Processing Times by Operation

*Visualization of the process times into a chart organized by operation (x-axis)

The general sequence for using the tool is as follows: start with a Data Gathering sheet, populate

the time elapsed and activity type for the process steps, manually adjust values for Units,

Operators, and Machines (1 Type), create a Totals & Chart sheet, analyze the Chart and the

summary data. The following illustrative example measured the process times from a video

about how contact lenses are made: https://www.youtube.com/watch?v=62tha1Kxa2c.

 1. Create a new Data Gathering sheet

Figure 4 – The New Process Button

Figure 5 – Input Box to Name the New Process

2. Use the Activity Type buttons to record times and enter description of process steps

https://www.youtube.com/watch?v=62tha1Kxa2c

Bailey 5

Figure 5 – The Activity Type Buttons and Process Steps

3. Create a new Totals & Chart sheet (enter appropriate values for the prompt pop-ups)

Figure 6 – The Totals & Chart Button

Figure 7 – Input Boxes Required to Calculate Takt Time

 4. Analyze the chart by identifying opportunities for improvement

 -Any operations with times that exceed Takt time (bar higher than the flat line)

-High idle times (indicative of excess Work-In-Process inventory)

 -Poor Takt Balance (not building to demand) or Constraint Balance (choppy flow)

Bailey 6

Figure 8 – Process Chart & Summary Info

Figure 9 – Processing Times by Operation & Summary Info

 -For the example used above, some possible observations might be:

~operation 6 is exceeding the Takt time, so demand is not being fully met

(it is possible demand was being met with overtime or that there might

have been more than 8 saline dwell machines available on the line…

average overtime can be adjusted in this tool by using decimals when

identifying the number of shifts such as 1.5 or 2.2 shifts)

~Constraint Balance is only 13% so perhaps the work content could be

adjusted between operations to improve flow

~There is no idle time observed, so either the process is very efficient, or

we just didn’t see any due to editing of the YouTube video

LEARNING POINTS & CONCEPTUAL DIFFICULTIES

Time Data

*Capturing time elapsed for a process step, I originally thought I should capture date &

time when a step starts and when it stops. However, it is redundant to do both when I

could simply capture the date & time stamp for when a step starts. To get the time

Bailey 7

elapsed I just find the difference between the time stamp of when the first process step

started and the time stamp of when the second process step started.

*For the “Start Date & Time” field, I originally used VBA code to insert the “=NOW()”

formula into the cells, but I realized this didn’t work because all the data updated to the

current date & time whenever the formulas recalculated (e.g. when opening or saving the

workbook). So I simply inserted the values of the “Now” VBA built-in function

hardcoded into the cells instead.

*I like displaying the values for reference, but a drawback is that a user might infer that

they can change the “Sec. Elapsed” field by changing the values in the “Start Date &

Time” field. Although the “Sec. Elapsed” field values are derived from the “Start Date &

Time” field, it is that way only initially as the resulting values are hardcoded too. This

ensured consistency in case the user needs to manually overwrite values in the “Sec.

Elapsed” field, so that we don’t have a mix of some cells with a formula and some

hardcoded. It’s just simpler to overwrite the “Sec. Elapsed” field values than to modify

the “Start Date & Time” field values.

*A particularly confusing obstacle in developing this tool was figuring out how to

format time data.

-The “Start Date & Time” field I created custom formatting to show the full date

as well as hours, minutes, and seconds in a 24-hour military time format.

-The “Sec. Elapsed” field I originally created a custom format to show hours,

minutes, and seconds (i.e. hh:mm:ss). However, this became cumbersome

because when you click on the cell to edit the value, its true form is in time of day

rather than a chronometer style. For example, a value one hour and thirty minutes

would show up as 1:30AM. This did not inhibit use of mathematical formulas in

connection with these cells. However, it did leave a blind spot. If a value were

greater than 24 hours (e.g. a process step requires oven curing for 72 hours), that

value still is displayed like a time of day (i.e. between 0001 and 2400 hours).

Furthermore, it was cumbersome to manually overwrite these type of formatted

cells; it could not be done with the numeric and operator buttons I had created.

Thus, even though I like to see time data displayed with days, hours, minutes, and

seconds, I decided it was clearer and easier to use by keeping all the time data in

the tool in seconds format. Future improvements might be to have another

column as reference that converts the time data from seconds into days, hours,

minutes, and seconds. It is hard to quickly recognize how much time we’re

talking about when values in seconds get above five hundred or so.

*Significant digits was another concern. I’ve experienced in the past how it can be

frustrating when numbers don’t add up, especially with lots of decimals involved. For

simplicity, I chose to make the “Sec. Elapsed” field round to the ones place. First, the

real detailed time studies can be performed by industrial engineers. For this model,

rounding primary measurements to the nearest 1 second helps keep it clearer and less in

the weeds. This was also a necessity so my numeric and operator buttons at the top of the

page could still work: they don’t work well with trying to incorporate decimals.

However, for the calculated times that are derived out of this primary time measurement,

Bailey 8

I’ve rounded to the hundredths place. This is a level of precision that most people can

still wrap their heads around, yet also offers a fair level of precision for finding process

step times per unit.

Charts

*I learned how to utilize InputBox better. When I create a Data Gathering sheet for a

new Process (a.k.a. System or Product Line), I used InputBox to get the name of the

Process so I could change the Name property of the new sheet (which is displayed on the

tab at the bottom of the Excel window). As I started using InputBox to gather other

important information from the user, I realized that a UserForm may be more desirable

than InputBox. This is a potential improvement to consider.

Figure 3 – Value Stream Analysis Chart with Summary Data

*When creating a Totals & Chart sheet I also used InputBox to collect crucial pieces of

information: the daily demand quantity and the time available each day to build the

model(s) in scope. I discovered a nice balance between detail and simplicity to find time

available: I ask the user for how many shifts are used (assume 8 hour shifts) and I seek a

% estimate for how much of the time the model(s) of interest are being produced. These

are crucial pieces of information to make the Chart useful. It enables creation of a Takt

line which tells us how much time we should have between finished units coming out at

the end of the Process. As long as all the bars on the chart are below the Takt line, we

can meet demand. If the bars are above the Takt line, we’re still okay as long as the line

graph – which accounts for multiple operators or duplicate equipment at the same work

station. The Takt line lets us see at a glance whether we’re able to meet customer

demand without overtime, or whether we’re overproducing, perhaps to increase

inventories.

*I learned the importance of using String and Object type variables when having to track

different objects carefully. When the tool creates a Totals & Chart sheet, I originally had

the VBA code build the chart using the data from my original Data Gathering sheet (e.g.

Bailey 9

the Sheet1 codename). However, as I created new sheets for different Product Lines, I

had to be sure that the charts I created pulled the data from the new Product Line

sheet and not from Sheet1. I learned to do this by concatenating a string variable in place

of the references to Sheet1. I again learned the importance of timing with defining

variables. I learned that when I defined a variable by saying it is equal to the name of the

active sheet, that original name is kept in that variable’s memory, even after I change the

name of the Active Sheet. In addition to needing a string variable for these purposes, I

found I also needed an object variable to replace instances where Sheet1 appears as an

object instead of as the prefix to a range reference.

 *When recording macros for creating charts, I learned several things:

-Macro recording is crucial, but don’t clean up the code right away. There’s

fewer useless elements of code to remove by going back and recording the macro

again until it’s pretty smooth with as few unnecessary clicks as possible.

-Using absolute references is usually easier than relative references

-If the dimensions of the chart’s data region can change (i.e. you might have more

rows of data than columns of data or vice versa), we need to create an IF

statement so that if the number of rows are less than or equal to the number of

columns we must build out the data series manually in the code. Otherwise, the

chart’s x-axis will show the Activity Types instead of the Operation numbers.

-Since the number of rows of data (i.e. Operations) can change based on how

many the user enters, we need a variable with a short 1 or 2-letter name to

represent the number of rows. That short variable must be concatenated in to

replace any cell absolute or relative cell references to the “last row” generated by

the macro recorder. It sounded simple to do this, but there was a significant

amount of troubleshooting and code revision necessary to adapt the tool to create

charts with varying numbers of data rows (i.e. Operations).

Errors & Troubleshooting

*I built an Undo button into the tool, for the touchscreen convenience on a tablet, but I

learned that the VBA code gave error messages when I tried to undo something that

doesn’t work, such as trying to undo a Subroutine macro that just ran. I added “On Error

Resume Next” code, and I imagine this can be helpful in many other situations.

*Due to the complexity of the tool, there are a higher amount of opportunities for the

code to fail based on unanticipated user actions. Further time could be spent going

through the tool to mistake proof the tool and avoid code errors. For example, the Input

Boxes should have rules included into the code if a user selects Cancel instead of OK.

Expanding Capabilities Beyond VBA

*I considered trying to use DLL (Dynamic Link Library) in order add the following

functionality to the tool, but I was not able to figure out how to do so. With more

research I may be able to find ways to add this functionality in the future.

-Using VBA to capture my voice and convert it to text to avoid having to pull up

the Windows virtual keyboard to type out process step descriptions

Bailey 10

-Using VBA to use the camera on my table to take pictures and video that could

be linked to a desired process step entered onto this Value Stream Compiler

Other

*I learned the difference between the Activate method and the Select method is that you

can Select multiple cells, but you can only have one Activated cell.

ASSISTANCE RECEIVED

*I did not receive any significant assistance on this assignment. The code was developed

by referring to class notes and examples, the course textbook, and the macro recorder.

