
Aaron Bean

VBA Final Project: Automating Technology Transfer Processes

Executive Summary

I recently quit working in BYU’s Intellectual Property Services, specifically the Technology

Transfer Office. This office focuses on taking professors’ disclosed inventions and patenting

them in the U.S. and other countries. Furthermore, once the process has begun to patent these

technologies, the Technology Transfer Office seeks out companies who would be interested in

licensing the technology, and enters into license agreements with these companies.

Because of the nature of the work (patenting), the Technology Transfer does a lot of work with

law firms outside of BYU. Currently, the process to approve and pay the law firms’ invoices, as

well as subsequently billing the licensees to reimburse for the invoices paid is an arduous,

manual task. My VBA project eliminates most of the manual effort (excluding data entry)

involved in this accounts payable/receivable process by downloading the necessary tables of

information from an access database, creating approval summaries for the director and his

associates, creating summaries pages for each law firm that is getting paid, and finally creating

an invoice for each licensee that has licensed a technology that was paid on.

Implementation

I approached my project in the following stages: getting data from an access database, creating

separate summary sheets the director and his two associates, emailing those sheets to the

respective individuals, creating summary sheets for each law firm that is going to be paid, and

finally creating a separate invoice for each licensee based on the costs they are responsible, and

saving those invoices as PDFs. It’s important to note that the excel file that is used for this

project comes with two sheets prepopulated: a sheet that lists the current director and

associate directors, as well as their IDs and email addresses; the other sheet is an invoice

template that is used to populate invoices to the licensees.

Additionally, I included a ribbon feature that allows the user to click an icon on the ribbon

which will run the macros in the background (see image below).

Furthermore, I also wrote a sub procedure that clears all of the sheets except for the two

prepopulated sheets.

Getting Data from Access

To be honest, this initial step wasn’t too terribly difficult. I recorded myself pulling a query from

Access, which includes all of the legal bills that will be paid in the next batch. Then I went into

the actual code and made a few modifications. Specifically, I made the sub procedure add a

new sheet after all the existing sheets in the workbook that contained this data, and then name

that sheet “Legal Bills.”

The module then begins another sub procedure that pulls a table from Access that contains all

of the law firm’s information – of specific importance is the law firm code that is unique to each

law firm and is used inside the database to help relate each invoice to a law firm. Pulling this

table was similar to pulling the query titled “Legal Bills.” I recorded myself pulling query and

then modified to the sub procedure to add a new sheet after all the existing sheets, which

contained the imported table, and then named the sheet “Law Firms.” The following is an

example of what the code looks like:

Summary Sheets for the Director and Associate Directors

In order for the invoices to get paid they need to be approved by the director and associate

directors. I began this step by writing a sub procedure that creates a two-dimensional array

based on the information in the prepopulated tab “TTO Employees.” This builds an array that

contains a name, ID, and email address for the director and two associate directors. Next, the

sub procedure creates a worksheet for employee listed in the array and names that worksheet

the employees’ ID, and puts the employee’s first name in cell A1 of the respective sheet. Then

the sub procedure copies the headings from the “Legal Bills” page and pastes them in the

second row.

The next step populates each employee’s worksheet with invoices from the “Legal Bills”

worksheet if those legal bills fall into the employee’s area of responsibility. It’s important to

note here that each invoice is tied to one of the employees via the employee’s ID. The sub

procedure evaluates all the cells that have the employee’s ID in a specific column on the “Legal

Bills” sheet. This is accomplished with a For loop – if the cell matches the employees ID in the

array based on the x value in the For loop, then that row of information is copied and pasted

into the respective employee’s sheet. An “If” statement is included in this procedure to define

where the copied legal bill information should go. The following is what the code looks like:

These sheets are then formatted based on another sub procedure I wrote. This sub procedure

performs the following formatting:

 Autofit the columns

 Define the width of the “Description” column (‘H’). Subsequently left and top vertically
aligns the cells, and wraps the text.

 Vertically top aligns the rest of the data

 Centers and underlines the data headings

 Formats the first two rows as title rows to be printed on each page (if multiple pages)

 Formats the amount column as “comma”

 Creates a sum cell for all the amounts listed, bolds this sum, and puts a top border on
the cell

 Orients the paper to landscape instead of portrait

 Fits sheet to one page wide

 Automatically prints the sheet in black and white

The code for the formatting looks like the following:

And the actual worksheet looks like this:

The final step in the process emails the summary sheet to each respective employee. This is

done by creating and saving a temporary copy of the worksheet. I should note that the code is

written such that Microsoft Outlook has to be open in order to send the email. When Outlook is

open, the procedure creates generates the email address to be used (based on the previous

two-dimensional array), and a name that consists of the employee’s ID, the name of the

workbook, and the date – this name is used as the subject line for the email. The sub procedure

then sends the email and deletes the temporary copy of the worksheet.

Summary Sheets for the Law Firms

The module then creates a summary sheet for each law firm that will be paid. This follows the

same process as the one used to create the employee’s summary sheets and the same

formatting. One difference for this process is establishing a query based on each unique law

firm code that is on the “Legal Bills” worksheet. One other difference with this process is that

the summary is only printed out and not emailed to anyone.

Create Invoice for Licensee and save as PDF

The sub procedure I wrote begins this process by pulling a different query of the legal bill

information that contains a column of which licensee are responsible for the legal bills. A table

of licensee information is also pulled from the database (“Licensee Info”). Similar to the Law

Firm summary sheets, this process creates an array of unique licensee values from the newly

populated query. This array is used, in conjunction with the “Invoice Template” sheet to create

new invoice sheets for each unique licensee value. This process subsequently populates the

new invoice sheet with the licenses name and address (by looking up the information on the

“Licensee Info” sheet), and copying over line items that each licensee is responsible for. Each

sheet is formatted such that the columns will all fit on one page wide, and then each sheet is

saved as a PDF. The following code makes up the majority of the sub procedure:

This an example of what the legal invoices looks like when completed:

Lessons Learned

First and foremost, this project taught me the importance of saving your work consistently and

especially before running your code. There were several times I ran my code without saving it

previously, and excel would unexpectedly quit and I lost all my work I had just added. When I

hit a few hard spots that I got stuck on, I learned is how helpful it is to walk away from the

project for a few minutes and come back with a fresh set of eyes. One of the more difficult

things times I had involved writing code to populate the invoices for the licensees. This was

cumbersome in part because the information pulled from access either had wrong information

or was formatted poorly. But the more difficult part was trying to write the code the way I had

things put together in my head. The lesson I learned here is that it’s better to write down on

paper what you’re trying to accomplish before you start writing the VBA code – this helps clear

up the logical flow of information and keeps things straight in your head.

Assistance

When I got stuck I looked up some code (the email process establishing an array for unique

values) on the internet and used it in my project, but modified it accordingly to fit my needs. I

also received some help from a classmate while setting up the ribbon and button to run the

code.

Conclusion

Overall, this project was a great learning experience in helping me understand how effective

VBA can be at solving real business problems, and how beneficial it can be to an organization.

This completed project will help save an average of 10 man hours/week at the Technology

Transfer Office.

