
Executive Summary

My project’s goal was the following, to have someone input information into the cells of the sheet that
consisted of a departure city, a destination city, and the dates of their travel. Because of the numerous
sites that claim to have the lowest price, most people have to check three or four places to verify that
what they got was the cheapest possible flight. So to avoid this hassle, I created this VBA project that
eliminates this need to check multiple places for flight information and gives you the lowest price
possible for the flight.

The way that I have done this is by checking one of the most popular travel agencies in the world, Orbitz,
and second checking Google.com/Flights which is simply a search feature that scans all the airlines
personal websites and verifies through them what their flights are. This way I checked both a travel
agency and with the airlines themselves to see who has the lowest price and then displayed the price to
the customer along with a hyperlink to the lowest price’s URL. In the following paragraphs

First Step: Understanding HTML and VBA

While my web programming skills are nothing short of embarrassing, I feel comfortable with reading
what the browser is rendering to me so this was a good first step into solving the first problem of, how
do I get information from the customer into the input boxes on the website?

In approaching this first question of how to input information into the designating fields that Orbitz
gives, I needed to know the id’s of the boxes or the names by which Orbitz identified them. So this
involved me going with IE and using the inspect element tool to find the specific tag or div that these
boxes were nested in and then getting there equivalent unique identifier to be used to locate them with
VBA. This proved to be a little bit more challenging than originally thought because the structure of the
webpage that Orbitz was using was a table structure with each cell being heavily formatted with
multiple nested divs to structure it the way that they wanted. So I had to really dig to find at what depth
the box was located and nothing else so that I prevented potentially changing other CSS or HTML in the
page with my code.

http://google.com/Flights

Second Step: Ribbon Click to start

As the user enters the excel document they are presented with the following table structure:

The cells under the blue cells are the areas where the user would input the desired information. They can enter
either airport code or City name. They need to enter dates in this format for the webpages to accept them
properly.

Upon entering the information, the user then under the “Travel” tab is
greeted by this button. Upon clicking it, the macro begins to run.

The sub below is code that is called when the Get flights button is clicked. It is at the top of all of my
code to allow chronological progression of the code.

After setting the global variables that will be needed in multiple sub procedures or functions, the first
lines set the departure and destination strings of the user input. The reason I do this here is to check
whether the user entered a city name or an airport code. If either string is greater than 3 characters
long, then I only run the Orbitiz code because only Orbitz handles city names. This is due from google
not allowing people from automatically filling input fields with text and then executing a post call. I
therefore had to edit the URL of google. This will be shown later in this report.

The other check that I do here is if there was a problem for some reason and no flights were entered or
a webpage failed, I set the lowPrice string equal to the error message that tells the user that something
went wrong and to try and run the process again. This lowPrice string gets edited by both the Orbitz and
google sub procedures so if it was successful, then this error will not show.

Third Step: Calling Orbitz

Upon the All sub calling Orbitz, the Dims are set and then the Agent a is the first to have a url call.

The price and orbitzPrice are local variables
that are used to verify that the lowPrice is
really the low price from the webpage.

I left the visible to True so that the user would know that the system was working instead of them
thinking that the click of the button did not register the action.

Next is the retrieving of information from the ranges that the user inputted. I then set those values to
the designated input tags in the HTML so that webpage can run the search on the values. This is where
the city name allows me to search for multiple airports with the city. If the user enters the full city name,
then Orbitz searches all airports in the city and returns the lowest fare for the user. The other important
attribute is the date format. Because I required the user to have the format previously mentioned, then
the date can be accepted by the page.

 After inputting the information, the code must select the “Search Flights” button on the webpage. To
find the element of the search flight button the above code is run. It starts by looking through all of the
HTML tags at each tag named “input”. Once it has that, it checks to see if within the tag’s html, it has the
string in the if-statement. Only the search button had this string so I was guaranteed that if I found it, it
was the one. Upon finding it, the agent then “Clicks” the button and it executes the call to the server to
return the flight search based on the inputted information.

These were the two tags that were needed to search for the returned price that was nested inside many
other div and span classes.

The outermost for loop is searching through the entire HTML looking for all the div classes. If it is a div
then it checks to see if it is the div that tag (our desired one) needs to be. This tag was the out box of the
first result set on the page. The page is default to always show the lowest price first so I was safe in
assuming that the first box will always be the lowest.
If it is the desired div that the code was looking for, then I set it to a div1 that is a dim object. Now instead of
having to search the entire HTML I can look just inside this container that the other tag resides in instead of looking
for it over the whole page.

It enters the y counter loop looking for tag2. Once the tag2 is found, then the price dim which was set to 0 at the
beginning is checked to see if it is still zero. If it is, then the price is set to 1 which ensures the following code will
only be run once. OrbitzPrice string is then passed to a function that takes the inner html and reduces it to only the
numbers without all the HTML.

The above functions take a string and run a regex first and then replace method.

$342.00

So the regex looks for digits only and replaces anything that is not a digit with an empty string. It returns

a value like 34200. This is why after calling the method I then do some string splitting that allows me to

add the decimal back in and add the 00 after it. After setting the lowPrice equal to this new string, the

URL from the search page is then stored in a global variable to later hyperlink the price back to this

specific webpage.

The for-loop because it is nested will be rerun so that is why setting price = 1 is important to avoid all

following prices will not affect it.

Orbitz is then finished processing.

Fourth Step: Calling Google

Once orbitz is finished and if the conditions are satisfied that it is only airport codes that is entered then the google
sub procedure is called. For brevity I will skip the same processes that google has that are exactly the same as
Orbitz.

After declaring all the variables and then retrieving the information from the user, then the date must

be formatted in the way google will accept it. This format is reverse of Orbitz and contains a 0 in front of

the month and day if these values are single values. So the new format must be applied before the code

alters the URL of the agent.

As you can see, these variables are inputted directly into the URL in the format that google accepts.

Once this is done, the results are automatically rendered. No need to hit search buttons! The above tag

is the particular div that google uses for their results.

Google’s result were easier to get to because of the structure of the page. This allowed me to avoid

nesting for loops and expedite the process. The difference between google and Orbitz in terms of how

logic after the correct div is found is, I verify that the googlePrice is less than or equal to the lowPrice

already set by Orbitz. If it is then the code runs very similar to Orbitz. The difference is in the cents

portion of the price. Google does not show the cents for the fare so I hard code double 0 into the

lowPrice if google is the low price. Always I set the URL to google if the prices are tied as well because of

the ease of Google’s display for the user and the direct access to the airline’s website without getting

involved with a travel agency. Finally, I exit the for-loop after this process to help speed up the process.

Google is then finished processing.

Fifth and Final Step: The End Result

The following image is the same as the fourth image shown under the second step of this paper

Once these methods return, the lowPrice is checked, the cell is cleared from previous searches, then if

everything went according to plan then the lowPrice is set in the range. The Hyperlink is attached to the

cell and it takes the user to the webpage where the lowPrice was located when clicked. After this final

step, the final output looks like this :

The Learnings and Difficulties

This project while I thought was fun, was extremely challenging at first to learn how to inerate through

the specific divs to locate my desired information. Once I grasped these concepts, it was much easier

and then I could add things like the Hyperlink and regex.

Over all it taught me what I desired to learn which was how to accurately glean information from other

sources and collect this data into excel based off some parameters that the user inputs.

As always, VBA had her quirks and learning curves that I had to overcome. I still haven’t gotten used to

not having this be a MVL framework programming language. Also not having hints from the

environment on how to solve errors or not having intellisense work with every object is hard to get used

to.

 Some things that I wish I could have done but couldn’t were figuring out how to insert the values into

Google to allow searching of city names as well as airport codes. Also I wish I could have implemented

some sort of userform to take the data that returned the results is a cool display. Or I could have

searched for flights on multiple days searching for the cheapest date to fly. The other thing is that

google has a table view that is displayed after the results are returned which is just a graphical display of

the results. I wish I would have had time to figure out how to import this graph to show the user how

there price matches all the others. Below is a sample of the graph:

I did not receive any help from other students on this project. I did speak with Gove and his comment to

me was “This is a worthy problem” when trying to help me with the div problem. So I felt justified in

struggling with that.

All in all it was great.

