

Deal Finder
MBA 614 Spreadsheet Automation

Final Project

Ryan Cluff

April, 2014

Introduction
Three years ago, my good friend Aaron showed me a website that would forever change the way I

shopped online: dealnews.com. This website is dedicated to scowering the internet in search of the best

deals and lists them according to “hotness” (rating system for how good the deal is, from 1-lowest to 5-

highest). Here, you’ll find deals ranging from 80% off clearance at Kohls.com to a free Panda Express

entrée, and everything in between.

The purpose of project deal-finder was to go one more step from what dealnews.com does. For years, it

became part of my morning routine to go to dealnews.com and scan the new deals for the day;

however, as of late, I’ve noticed my days have been so busy that I often don’t have time for my online

deal fix. Project deal-finder does what I now cannot – search for the best deals that I care about and

publish them in a way that I can quickly look at them. Essentially, deal-finder scans dealnews.com’s 300

daily deals and filters them according to keywords that I set. If deal-finder finds a keyword match on a

deal that has a “Hotness” above my threshold, it sends me a message – either via text or email. Now I

can focus on my studies while deal-finder is on the lookout for the best online deals that matter to me.

Implementation Documentation

Sending Messages
The first functionality that I needed to set up was the ability to send an email. Fortunately, we had a

class lecture that showed how to set up an email function, which is what I followed. For privacy reasons,

I created a new gmail account who’s credentials I use to send the emails. Those credentials are stored in

cells B2 and B3 on the main “data” sheet. The purpose for that was to allow the user to be able to use

whichever email account they’d like.

The function for sending messages is named “sendMessage” and it requires 3 arguments: 1) the address

of the person receiving the message, 2) the message itself, and 3) the subject of the message. The

function will return a true or false whether or not it was able to successfully send off the message.

One more step was needed in order to send text messages. Text messages can be sent via email if you

know the correct format that the phone number needs. I created a new sheet and named it

“phone_carriers”. This sheet has only 2 columns: the names of all the phone carriers and their

respective MMS mail address with a “<number>” inserted where the phone should be. I later

implemented a check in the main sub routine that either uses the phone carrier’s email format or the

user’s email address as the address for sending the message. We’ll go over that later.

Parsing the HTML
The next functionality I set up was the system to load and then process the HTML source code for

dealnews.com. Initially, I set up a loop that would load the three separate pages (each holding 100

deals), but after looking at the HTML that VBA loaded, I realized that for whatever reason, all 280+ deals

were being loaded on the first page, so I removed the looping function.

All the settings that control what the program looks for is saved in the table on the “data” worksheet

(See Appendix A). This table lists the user’s name, phone number and carrier, email address, and

information specific for the deal search such as keywords (delimitated by a “;”) and the level of hotness.

The function “findDeals” only needs two inputs: the string of keywords and the lowest acceptable level

hotness. The HTML is already loaded on a global agent variable. This originally wasn’t the case. At first, I

was loading the HTML every time the findDeals function was called, however, it takes a good 5-10

seconds to load the HTML and I quickly realized that trying to load (the same) HTML for each user would

take forever. I ended up declaring the agent object “a” globally and loading the HTML in a separate

function called “loadPage”. Now back to the findDeals function.

The findDeals function followed this general process:

1. Search from the current position in the HTML for the phrase “<div class=""article article-“. That

phrase identifies that start of a new deal <div>.

2. From there, search for the phrase “<div class=""hd"">”. This <div> marks the start of the header

of the deal. The header contains the main blip describing the deal as well as another <div> that

shows the deal’s hotness.

3. From this position, it saves all the text until it finds “<div class=""hotness info""” and then again

until it finds “</div>”. All this text encompasses the title and hotness of the deal.

4. It searches this text for “hotness: “ which is the alt text for the <a> tag that the hotness level is

stored in. the very next character is a 1-5 which corresponds to that deal’s hotness. If the deal is

hot enough, the function continues, otherwise it starts back over at step 1. and searches for a

new deal.

5. With the hotness high enough, it now splits the keyword string with the “;” delimiter and for

each keyword, searches the title.

6. If there’s a match between a keyword and the title, then the function saves the description of

the deal by searching the HTML from the current position for the text “<div class=""article-

body"">” which marks the beginning of the description of the deal. And then saving all the text

until it finds a “</div>” which marks the end of the description.

7. The deal’s description is then saved to an array called “deals” and the integer “numDeals” is

incremented. Now we go back to step 1 and repeat until there are no more deals.

8. Once there are no more deals, it dims the function’s variable (findDeals – which is a variant) to

have the same number of elements as that size of “numDeals”. Then we set findDeals to deals

and that is what is returned from the function.

Creating/Editing Search Records
Now it was time to create a simple way to add, edit, and remove search records. I started by adding two

buttons on the worksheet with the table.

1. The first button was labeled “edit search”. The macro that this was connected to essentially

loaded the form with the data of the row of the currently-selected cell. If the row of the

currently selected cell was the first row (where the headers are) or a row without data, then the

last record would be selected.

2. The second button was labeled “add search”. The macro that this was connected to moved the

currently selected cell to the end of the list and then loaded the form. Upon saving the form, the

data would be added to that row.

We will now discuss each element of the form.

A. The Name, Email, and Phone fields were simple text controls. They were linked directly with

their corresponding columns in the “data” table

B. If the preferred contact method was set to Email, the form’s saving sub would check to make

sure that a valid email was also provided (valid meaning there was at least an “@” in it).

Similarly, if “Text Message” was chosen then both a valid phone number (either 7 or 10 digits

long) and a phone carrier must be provided.

C. This is just a drop-down menu from 1-5 for the possible hotness levels. Any deal equal to or

higher than this value will be accepted.

D. These buttons control the search record and they act just as you’d expect. “Save” saves the form

to the current row. “Cancel” closes the form without saving. “Delete” deletes the cells of the

current record.

Figure 1: Form Controls

E. This button adds the text in the textbox just left of it to the “keywords” list. Any word in the

keywords list (regardless of whether they are selected or not) will be added to the record. I also

added a prompting default value in this textbox that says “add search term here”. As soon as the

user selects this textbox, I run a sub that clears this value (similar to how some online fields

work)

F. This is the keyword list. As I mentioned earlier, all the list items here will be saved as keywords

to the record.

G. This is the “Delete Keywords” button. When the user clicks this button, all the keywords

selected in the keyword list will be removed from the list. This is how the user can remove

unwanted keywords from their search list.

H. This is the Carrier dropdown list. The elements of this list are populated by the cells in the

“phone_carrier” worksheet.

Bringing it all Together
Now that we have all the pieces, I needed a main sub that brought them all together. I added a button

on the main “data” worksheet – a big button – named “run”. This button runs the “scanSearches” sub.

The “scanSearches” sub is what calls the function to load the website, loops through each search record,

calls the function “findDeals” function to search for deals, and if deals are found, creates the message

and calls the “sendMessage” function to send the message either via email or text. It performs this

operation using the following steps:

1. Loads the page by calling the “loadPage” function and passing it the dealnews website url

2. Dims the “users” array. The length of the first dimension of this array will be as long as there are

search records in the “data” table. The length of the second dimension is initially set to 300,

because that is the maximum number of deals that they could potentially have.

3. Scans through each search record and sets the first “row” of the “users’ array to equal the name

of the the user in the search record. After this, all subsequent rows of the “user” array (rows 1-

300) are dedicated to holding the descriptions of the deals.

4. Runs the “findDeals” function and sets another dynamic array “deals” to what “findDeals”

returns.

5. Loops through each item in “deals” and saves it over to “users”

6. Repeats steps 3-5 until all the search records have been ran

7. Loops through each deal for each user and if there is a deal, it concatenates it to the end of the

“message” string.

8. If the “message” string is not empty, then it checks what method of deliver the user wants (text

or email) and it calls the “sendMessage” function passing It the correct address (either the email

address listed in the search record, or the address corresponding to the phone carrier with the

“<number>” part replaced with the user’s actual phone number)

Learning and Difficulties Encountered
1. I once tested the search using the keyword “hat”. This search returned tons of deals, all of which

had nothing to do with hats or clothing at all. I realized that there were many words , like

“that”, that contained the substring “hat” in them. This meant that the search function could

potentially produce a false positive thinking that there’s a match when really there shouldn’t be.

Solution: change the search function to look for the keyword surrounded by spaces (eg. “ hat “

instead of “hat”). This solution works, however, it also ensures that some desirable substring

matches (such as matching “dresses” with “dress”) would not work. Future versions of this

program could potentially fix this by also searching for common suffixes of the keyword (such as

“-s”, “-ed”, and “-ing”)

2. There were many looping issues that I needed to debug. Transitioning between looping through

arrays with a base 0 and other lists (strings and cells) with a base 1 is always a challenge.

3. As I mentioned earlier, I was originally loading a new HTML every time I called the search

function. This resulted in the program taking a dreadfully long time to run.

Solution: Separate the loadPage function and only call it once at the beginning of the program.

Also, I needed to be sure to reset the agent variable back to 1 before looping to the next search

record.

4. I few test searches resulted in no matches, yet I would still get a text or email. This was

annoying.

Solution: I added a check at the end of the loading the message that would only call the

“sendMessage” function if there was at least one deal found for that search record

5. I thought it would be a little confusing the way I set up the Keyword list in the form.

Solution: I added the “add search here” default text. In order for it to work correctly, I also had

to add an extra check in the the “add search” button so that it wouldn’t add a list item if the

textbox contained “” or “add search here”. I also had to add a new event sub for when the

textbox was selected that would clear the textbox’s value if its value was “add search here”. And

finally, once a term was added to the keyword list, I had to refil the textbox’s value to “add

search here”.

Assistance
I had no assistance with this project.

Appendix

Appendix A

Screenshot of the worksheet “data”. This shows the email SMTP settings (username and password),

three control buttons (edit search, add search, and run), and the table containing the search recrods.

Appendix B

Sample form with populated data

Appendix C

Sample message of deals sent to email

