
Nate Barnes
MBA 614
Final Project
4/20/2014

EXECUTIVE SUMMARY

I’m working with a friend of mine on a business idea. Our business is based on the idea that social media

is simply a social engagement tool, or a method to increase or smoothen human social-interactions. On

that premise, we’re developing BracketCity. BracketCity is a simple method for people to share and

complete brackets with their friends. But the brackets behind BracketCity are meant to go beyond what

you typically see during March madness. Using the BracketCity app, you can create a bracket of anything

you want to share with your friends. The idea is users can generate brackets which appeal uniquely to

their friend-group, like which friend is most likely to be a millionaire or who’s the best looking girl at

your school, etc.

For this project, I have built a prototype, which will be used for testing the marketability and usability of

our bracket business. BracketCity relies heavily on creative user-generated content and our main focus

with this prototype is testing out several brackets, which we are putting extra effort into. Essentially,

we’re testing whether or not great content will get higher response rates and attract more users.

Additionally, this prototype will be used as a minimum viable product, we’ll ask for feedback from users

on the format, layout and flow before programming a prototype online or in the IOS/Andriod

environment.

OVERVIEW OF SOLUTION

The BracketCity excel file is meant to be distributed to multiple users as a method for collecting results

from a large sample of potential users. This file is self-sufficient and does not require any additional

external files to function properly. The basic layout of the “Bracket” is as follows:

The macro-programming behind the bracket guides the user through 4 rounds of “matchups.” During

each round the following steps were taken:

1. Drop-down menus are generated to sort through the matchups.

2. The user is prompted with message boxes.

3. The user selects winners for each matchup using the drop-downs.

4. Buttons are used to direct the program forward to the next round of matchups.

5. Results are recorded.

Each matchup’s winner is picked by the user via a drop-down (also known as a ComboBox). This ensures

that the user cannot generate their own solution, but it’s restricted to those specified in the drop-down.

As each round is decided upon by the user and finalized, the selections are recorded in a table on the

right-hand side of the sheet. These selections are recorded in a unified manner so the user can email the

selections to me for aggregation.

The resulting sheet should look as follows:

Upon completing the fourth and final round of the brackets, the user is prompted to email the results to

nate.a.barnes@gmail.com for aggregation.

DETAILED SOLUTION

Upon opening the file, users will see 16 items, seeded from 1 to 16, in the typical “bracket” fashion. This

mimics what users will see when we have developed our own prototype of a bracket, seeded from 1-16.

 The “Fill Out Bracket” button on the customized “BracketCity” tab starts the process of completing a

bracket. Once the “Fill Out Bracket” button is pushed, the following code is executed:

mailto:nate.a.barnes@gmail.com

Public Sub Callback1(control As IRibbonControl)

 insertComboBoxes

 initializeValues

 showIntro

 MsgBox "OK, now use the drop-down boxes to select your winners for round #1. Once
You've made all of your 1st round selections, continue to round 2 by pressing the
'Continue to Round 2' button on the right"

 insertRound1Button

 insertAllResetButton

End Sub

This code runs several function on the backend and several visible to the user. First, we’ll talk about the

user prompts. The user is prompted by two consecutive pop-up boxes. The first is an InputBox (from the

showIntro sub procedure), which asks the user to input a name and recording that name on the top of

the “Bracket” sheet. The second is a message box which prompts the user to make first round selections

by using the drop-down (combo-boxes). These prompts are used to help direct the user. Filling out a

bracket is pretty straight forward, but directions are always helpful when dealing with an aggregated

population.

Of course, on the back-end the program is running separate macros to alter the display. Also tied to the
“Fill Out Bracket” button (in the code above) is the following 4-step process:

Step 1 DropDown menus are created for each of the round 1 matchups (insertComboBoxes).

Step 2 DropDown menus are initialized with the seeds from round 1 (initializeValues).

Step 3 A Button is created for the user to continue to the next round (insertRound1Button).

Step 4 Selections are recorded.

STEP 1: The drop-down menus must first be created before populated. There was some consideration of
just leaving them pre-formed in the excel file before sending. It was decided to have them created in the
startup code for several reasons 1.) It made it easier to debug as re-creating new drop-downs was
written into the code and 2.) This makes it easy for the user to reset if they too mess something up.

The following code was used to insert the drop-downs into the brackets:

With Range("C3")

 Worksheets("Bracket").DropDowns.Add(.Left, .Top, .Width, .Height).Name = "ComboBox1"

 End With

Using the “With Range(“C3”)” object, the dropdowns would automatically adjust their size to fit each
respective cell. This same code was used for each of the 8 initial dropdown or ComboBoxes.

STEP 2: After the drop-downs are created, they are populated. This is simply recording the values held in
the first round of the bracket and putting them as options in the drop-downs. This is done with the
following code:

Sub initializeValues()

 With Sheet1.Shapes("ComboBox1").ControlFormat

 .AddItem Sheets("Bracket").Cells(2, 2)

 .AddItem Sheets("Bracket").Cells(4, 2)

 End With

I wrote “initializeValues” as a separate sub procedure outside of the main “Callback1” trigger connected
to the “Fill Out Bracket” button so as to be able to debug the function separately. This procedure uses
the .AddItem method to add values to the list of the dropdown (ComboBox). And within this
“initializeValues” sub, there were 8 different sections adding values to the 8 separate drop-downs.

STEP 3: The “Continue” buttons control the flow of the program and the bracket. They act as gate-
keepers for each round. Once all selections have been made, the user has the option of hitting the
“Continue to Round 2” button.

Upon hitting this button, a similar code is triggered through the .OnAction method of the button. The
user will cycle to the next round and a near-exact 3-step process. Below is the code used to cycle to
round 2 from round 1:

Sub insertRound1Button()

 With Range("H7:H8")

 Worksheets("Bracket").Buttons.Add(.Left, .Top, .Width, .Height).Select

 Selection.Name = "round1Complete"

 Selection.OnAction = "round2"

 With Selection

 .Characters.Text = "Continue to Round 2"

 With .Font

 .Name = "Arial"

 .Size = 12

 End With

 End With

 End With

End Sub

Step 4 Lastly, once the selections have been made and the button is pushed, the selections are recorded
near the top right-hand side of the sheet.

The table is used to collect the selections but selections are also inputted into the bracket. The following
code is used to record the selections:

With Worksheets("Bracket").Shapes("ComboBox1").ControlFormat

 Worksheets("Bracket").Range("K2").Value = .List(.ListIndex)

 End With

Worksheets("Bracket").Range("C3").Value = Worksheets("Bracket").Range("K2").Value

Along with this 4-Step process of 1.)Creating drop-downs, 2.)Populating drop-downs 3.)Creating buttons
and 4.)Recording selections there are minor secondary elements to the code.

 Drop-downs from previous rounds are deleted.

 “Continue” buttons from previous rounds are deleted.

One additional step is unique to the first round, a button created for resetting the brackets
(insertAllResetButton). This button remains in place throughout the program giving the user an option
to reset the bracket completely and start from scratch.

Upon pressing the reset button, all selections will be deleted from the entire bracket and the user can
start again from round 1. The following code was associated with the ResetAll button:

Sub resetAll()

 ActiveSheet.DropDowns.Delete

 ActiveSheet.Range("K2:K16").ClearContents

 ActiveSheet.Range("J2:J16").ClearContents

 ActiveSheet.Buttons.Delete

 ActiveSheet.Range("C3:C31").ClearContents

 ActiveSheet.Range("D3:D31").ClearContents

 ActiveSheet.Range("E3:E31").ClearContents

 ActiveSheet.Range("F17").ClearContents

 End Sub

SUBSEQUENT ROUNDS

Each subsequent round follows a similar process. After the user has seen a prompt with directions, the
code follows a similar 4-Step process:

Step 1 DropDown menus are created for each of the round 1 matchups.

Step 2 DropDown menus are initialized with the seeds from round 1.

Step 3 A Button is created for the user to continue to the next round.

Step 4 Selections are recorded.

All of these steps are very similar to the first round, with adjustments made for the positioning of the
drop-downs, number of drop-downs, linkage of drop-downs, etc.

Finally, on the last round of the brackets, the user is prompted by a message box which is different from
the previous rounds. After selecting the champion for the bracket and pressing the “Continue” button
for the final round, the user is prompted with the following message box:

At this point, the bracket is complete and the selections have been organize neatly on the top sheet. All
the user needs to do is email the results to be aggregated.

DISCUSSION & CONCLUSIONS

To be clear, my project was built completely from scratch. There was no template used in building this
and no assistance was asked for or taken. Much of what I figured out came from the internet and
searching for key terms associated with VBA. And much of the difficulty came from figuring out which
key terms to search for.

Frankly, I thought the most difficult aspect to coding in VBA is figuring out the structure of the language.
The conceptual build-out of the sheet was not that complicated and I had a good vision for what it was
supposed to look like but things got messy when the code wasn’t clean. As an example, I struggled with
differentiating between the various types of ComboBoxes which could be used. I settled on a “form
control” ComboBox because it seemed to be easier to manipulate at first, but in the end it was a pain.
Apparently the .Value property of the ComboBoxes was not the selected value from the box but the
index value. So, in order to return the selected values from the ComboBoxes, I had to do the following
each time:

With Worksheets("Bracket").Shapes("ComboBox1").ControlFormat

 Worksheets("Bracket").Range("K2").Value = .List(.ListIndex)

 End With

This was a pain to code and it took me hours to figure out what I needed to do to get the selected
values. In hindsight, the “ActiveX” type was likely easier.

Another issue I constantly ran into came about when dealing with the various properties associated with
each object. It seems that VBA gives a ton of control and leaves the user with many options to toggle
when setting up the program. But all of that freedom makes it difficult to search for and find answers.
The VBA world is an absolute ocean of knowledge online but when you don’t know which part of the
ocean you need to be in, it’s very difficult to come up with the relevant answers.

The process of coding this project taught me a lot and I’m glad I finally completed it. Additionally, I think
this prototype bracket along with subsequent others will help in identifying and understanding the

market pain we’re going after with BracketCity. I feel confident that this is a good working prototype
which I can send to others to record information and get feedback.

APPENDIX

Below is all of the code used for this project:

