

Box Office Crawler

A VBA Project by
Matt Winn

IS 520
Section 1

Professor Gove Allen

Executive Summary

 For my project, I decided to create something extremely practical and immediately

useful in my own work and school. In Business Intelligence, my team and I wanted to research

the answers to many important questions about the movie industry, such as what makes a

movie successful. So, I created a VBA script to meet our huge need of grabbing thousands of

pieces of data as well as converting them to usable forms and cleaning them in preparation for

analysis. However, it has since evolved into a powerful data scraping and analyzing tool for

anyone who wishes to use it. My VBA project works in conjunction with Box Office Mojo, the

largest and most complete movie database in the world (owned by IMDB). Anybody who

wishes to grab useful information on a movie or any number of movies, and then analyze the

success of those movies based on many different factors, are welcome to use my workbook,

and even embellish upon what I have created. The script I wrote to scrape data, easily executed

through a custom button in the ribbon (“Get Movie Info”), uses the hyperlinks connected to any

movie title copied from BoxOfficeMojo.com in the Title column of the “Movies A-Z” worksheet

to grab the producing studio, total box office gross, opening date, rating, genre, director (if

listed/known), total known days in theaters, day of the week opened, budget (if listed/known),

and runtime of the movie, all in two seconds or less (per movie). It also converts all gross and

budget figures to 2014 dollars, so that movies from all years may be compared side-by-side,

and it extracts the specific year and month of the movie release, for purposes of analyzing.

Once all records and related data have been retrieved, the user may click “Create Result

Charts” and the workbook will generate multiple charts to compare movies based on earnings.

Implementation Documentation

The following is a hierarchy of the code in BOMOJO_Graphs&Ribbon.xlsm:

 xRibbon.btngetInfo_click (ribbon subroutine)

o Runs WQGetValues.FillVariables

 Runs WQGetValues.Format

 Runs WQGetValues.Scrape

 Uses WQGetValues.FindMonth (function)

 Uses WQGetValues.GetDays (function)

 Runs WQGetValues.Calculate

 xRibbon.btnmakeCharts_click (ribbon subroutine)

o Runs WQGetValues.ChartMaker

 Uses WQGetValues.ClearCharts

 Uses WQGetValues.ResizeCharts

When using the modules in this workbook, the user must first copy and paste the titles

of the desired movies from BoxOfficeMojo.com into the Title column of the “Movies A-Z”

worksheet (see Figure 1). All titles copied from the BoxOfficeMojo movie results section will

have a hyperlink connected to them that can be used to navigate the web query wizard (see

Figure 2). After all desired movie titles are copied to the Title column, the user need only click

the “Get Movie Info” button under the “Movie Functions” tab. When this button is clicked,

btngetInfo_click in the xRibbon module is called, which in turns calls the FillVariables

subroutine in the WQGetValues module.

FillVariables runs three separate subroutines: Format, Scrape, and Calculate. The Format

subroutine changes all variable columns to the correct formats, automatically deletes rows that

have “n/a” in them (since this has proven to be indicative of how little information is available

on that movie), and extracts both the day of the week and the year on which each movie was

released.

The Scrape subroutine uses the web query wizard in conjunction with the movie title

hyperlinks to navigate to each movie web page and scrape all text from the page (See Figure 3).

This text is dumped into the “WebQuery” worksheet, and Scrape uses the find method to

extract the appropriate variables from the text. Most of these variables do not stand alone in

the text and therefore Scrape also splices and parses many clumps of text to produce the

desired variables. In some cases, a figure does not exist for the much desired Days In Theater

column; in these cases, Scrape extracts the Close Date from the page text, utilizes the

FindMonth function to parse the date and the GetDays function to manually calculate the

number of days between the release date and the close date. Finally, it converts all numeric

strings to their appropriate data types and uses an average ticket prices by year chart on the

“Prices” worksheet to calculate how many box office tickets were sold for each movie and

thereby finds the adjusted 2014 box office gross amount (see Figure 4).

The Calculate subroutine works similarly to the Scrape subroutine, but with one

purpose: to adjust all available Budget figures for inflation. It uses the Consumer Price Index

Inflation Calculator from data.bls.gov to input budget figures and subsequently scrape and

convert output figures back into numeric variables (see Figure 5). As one might expect, this

makes use not only of the Budget column but also of the Year column created in Format.

Once all movie data has been collected and formatted, the user may wish to see how

the movies compare to each other in their success based on their genre, rating, or release

month. In this case, the user can click on the “Create Result Charts” button and get their wish.

The button calls the btnmakeCharts_click subroutine, which in turn calls the ChartMaker

subroutine.

The first thing that ChartMaker does is it calls the ClearCharts subroutine to empty the

“Charts” worksheet and pave the way for a new set of charts. After that, it selects all of the data

from the “Movies A-Z” worksheet and creates a pivot table with it in the “PTables” worksheet.

It does this three times, each time creating a different pair of variables in the pivot table. The

first pivot table finds movie success (adjusted gross) by rating, the second pivot table finds

movie success by genre, and the third finds movie success by release month (e.g. do movies

make more when released as a summer blockbuster or around Christmastime?). Once the

pivot tables are built, ChartMaker takes them and creates appropriate visual graphs from them.

The ratings table is shown in a column chart, the genre table is shown in a bar chart, and the

release month table is shown in a pie chart (I felt like those chart types were most appropriate

for their respective data sets). If the user wishes to add a different chart in the future, all he

need do is simply copy and paste the code from a previous pivot table and chart and switch the

variable names. After each chart has been created, ChartMaker calls on the ResizeCharts

subroutine, which conveniently resizes each chart depending on its type, thus rendering it

much more readable for the user (see Figure 6).

Learning and Conceptual Difficulties

 There were many difficulties that I encountered during this project. During my first run

of writing the VBA code for this, I used Agent (Gove Allen’s creation) to navigate through the

web pages and scrape the data. I had very little experience with Agent, so the learning curve

was steep. I found it especially difficult to use the tag-identifying methods to find the data

pieces I wanted; it was even more difficult when I discovered that the structure of each page

was different. After finishing the majority of my VBA script, I came to a crossroads. At this point,

Agent was taking approximately 30 seconds on average to grab the data for each movie.

Considering that I was trying to scrape the data for over 2,200 records, this was a major time

investment. However, when a previous student mentioned that Web Query might be able

scrape the data more quickly than Agent, I decided to look into it. Working with Web Query is

extremely different from working with Agent, so it, too, held a steep learning curve for me. Yet,

the results were worth it. Whereas Agent took 30 seconds to grab the data for a movie, Web

Query takes only 2 seconds on average. This was a great triumph because it suddenly took the

required running time for our records from almost a whole day to about an hour.

 That being said, a few other specific walls I ran into and had to climb over include when I

found out that each BoxOfficeMojo page was structurally different—this forced me to rethink

my searching methods and write a lot of contingency code; when I was writing the code for

resizing the charts—there was no publicly available method that would work in my scenario, so

I had to come up with a bit of original code; and when I had to learn how to create pivot tables.

Learning how to create pivot tables from the movie data proved to be something of a

nightmare. It took me hours to figure out how to simply get Excel to stop yelling at me for illegal

commands, and all this even after using Excel’s own macro code to learn how it all works.

Assistance

I received absolutely no help from any other individual when working on this project.

Appendix

Figure 1 – “Movies A-Z” worksheet and “Movie Functions” ribbon buttons

Figure 2 – Table of movies from BoxOfficeMojo.com

Figure 3 – Sample movie page from BoxOfficeMojo.com

Figure 4 – Average ticket price by year table on “Prices” worksheet

Figure 5 – Screenshot of Consumer Price Index Inflation Calculator at data.bls.gov

