
VBA Final Project-Elizabeth Hilton 

In Search of a More Accurate Share Price 

Executive Summary  
Prior to business school, I dabbled in a start-up business in the racing and exercising industry. During my 
MBA education, I was involved in assisting with the Miller New Venture Challenge (BYU’s business 
competition), interning with Pelion Venture Partners (a top decile VC firm in Salt Lake City), and serving 
as part of Cougar Capital (BYU’s student-run venture capital fund).  In all of these endeavors I worked 
extensively with revenue projections and felt that the tools to which I had access were lacking. After 
taking this VBA class, I knew I could do something about that problem. 

An entrepreneur relies heavily on her revenue projections. The majority of her business decisions 
revolve around what will bring in the most revenue. In the business world, the only person more 
concerned about her revenue projections is perhaps the Venture Capitalist who invests in her business.  
The VC often uses the revenue projections to determine how much the company is worth. 
Unfortunately, the company value is only as accurate as the assumptions driving the projections’ model. 
If one adjusts these assumptions even slightly they give an entirely different projection and could 
completely change whether or not a business is predicted to be profitable and whether or not Venture 
Capitalists are likely to get a return on the money they invest in the company. 

Several years ago, BYU’s Business Plan Competition Director created a simple model to help 
entrepreneurs determine their revenue projections. This rudimentary model is driven by customer 
acquisition rates through email. The assumptions behind the revenue are calculated by merely having 
the entrepreneur arbitrarily list three inputs:  (1) how many people she thinks will open her emails, (2) 
how many of those people will click the link in the email, and (3) how many of those people will actually 
convert to a user of the entrepreneur’s product. Then, those inputs are used to predict yearly revenues 
over five years. These revenue forecasts are then transmuted into a balance sheet that calculates 
owners’ equity. This equity is used to calculate price per share each year, determining how much the 
company is worth. Because the entire model is driven by the entrepreneur’s inputs for marketing 
information around customer acquisition rates, this model is very sensitive to change, making it highly 
subjective to the entrepreneur’s assumptions around various conversion rates. 

In order to make this model a better estimate of what might actually happen to the business’ value over 
the next five years, I coded a ribbon modification that runs a Monte Carlo selection procedure of the 
entrepreneur’s three inputs. The simulation then projects probable revenue ranges and share values to 
analyze the forecasts. The inputs for the simulation are recorded through a user form that gathers each 
marketing assumption’s initial value and low and high ranges for those values. It also asks for how many 
iterations the user would like to run. Obviously, a more thorough and accurate analysis will require more 
iterations. Nevertheless, the user form has an exit button to allow the user to exit the procedure in the 
event that the user inputs too many iterations (e.g. near or outside the Integer variable type range) and 



2 
 

the processing ends up taking too long. After each iteration the balance sheet rebalances in order get 
the updated ownership percentages and share price. Each iteration of data is recorded, and the code 
creates a chart object to visually display a histogram that continually updates while the simulation is 
running. Incidentally, this chart is added into a worksheet and formatted entirely programmatically – 
this was more difficult than either creating a chart through the Excel interface or creating a chart object 
as its own worksheet object. The user form gives the user the option of viewing the histogram changes 
as each iteration runs or unchecking this option to speed up the simulation and only display the final 
results. Either way, the user can look at the histogram and see the likelihood of a range of various five-
year share price growth rates. From these growth rates, she can determine the most likely scenario, 
input the data in the assumptions tab and rebalance the data. This data will now be more than just a 
random guess, allowing both her and the VCs to make better decisions.  

As part of creating this tool to build more accurate projections, I also fixed the existing code (only five 
lines of goal seek function calls) in the original model because it was clunky in that it required the user to 
manually run a balance sheet macro several times in order to balance the balance sheet. Now the 
balance sheet macro is called automatically at the end of each iteration in the simulation. 

With this VBA coding, the model now gives a much more accurate forecast of revenues that in turn give 
a much more robust analysis of the share price. Using this code the entrepreneurs can better see if their 
business is likely to be profitable and VCs can better estimate their return on investment. 

Implementation Documentation 
The first step to creating this VBA model was to fix the balance sheet calculation method. In the original 
model, the only existing code in the entire model was written so that it required the user to run a 
balance sheet macro several times in order to balance the balance sheet. I started by modifying the 
balance sheet macro so it was contained in its own While loop so it could be effectively called 
programmatically.  I also included it at the end of my simulation For loop so it will run during each 
iteration of my Monte Carlo routine. 

I wanted a custom ribbon in this model. I went to the Custom UI Editor for Microsoft Office and inserted 
code that created a new tab called Monte Carlo. Then I created two buttons: one called Monte Carlo 
and Balance and the other called ReBalance: 

 

  



3 
 

Because I didn’t want any confusion, I added a Screen Tip to each button: 

 

The Monte Carlo and Balance button runs the Monte Carlo simulation through a user form box (which 
includes calling the ReBalance logic on each iteration) and records both the input data and the output 
share prices in a hidden worksheet. This data is therefore persistent and leaves the model with a clearly 
readable histogram when it is opened later. Once the entrepreneur has reviewed the histogram, 
determined the validity of the assumptions, and decided on the best assumption for her business, she 
can change the model’s inputs and click the ReBalance button. This will only balance the balance sheet 
and not rerun the Monte Carlo. Additionally, an entrepreneur might need to make manual alterations to 
the balance sheet, so the ReBalance button will also work for that case. 

A user form box is the easiest way to run the Monte Carlo and define the appropriate ranges for its 
random selections. It is important that the user is able to set parameters for the simulations, or it will 
take too long to run and not be as accurate. An entrepreneur will usually know a range of marketing 
assumptions that she feels she can hit. The Monte Carlo will show her the profit probabilities within that 
range so she can make better financial projections. Therefore, the user form focuses on three marketing 
assumptions and asks for three inputs for each of the three marketing assumptions: Initial Value %, Low 
Range %, and High Range %. The initial value is the original assumption. For example, if the entrepreneur 
estimates that 4% of the emails she sends will be opened, then this box should contain 0.04 for the 
initial value input. The high and low values are the ranges over which the Monte Carlo simulation will 
select random numbers. For example, if the entrepreneur is very confident in the 4% open rate based on 
past experience, the low value could be 0.95 (which means the bottom of the random number range will 
be 95% of the initial value) and the high value could be 1.05 (which means the top of the random 
number range will be 105% of the initial value). 

The user form loads by running UserForm_Initialize (frmSimulate_Initialize in this case specifically) and 
preloads the form with the model’s current assumptions as well as some default ranges for the random 
number selection, but the user can and should edit any of these fields to her preference. Then, the user 
must specify how many iterations she wants to run. A good number would probably be about 1,000, but 
she could input any number. The number of iterations is directly proportionate to the accuracy of the 
projections. More iterations equal more accurate projections. I also decided to include an Exit button so 
that if iterations end up taking too long to populate, the user can exit the simulation. The exit function 
relies on a Boolean global variable that flags whether or not the iterations should be canceled, and there 
is a DoEvents function in each iteration to check this flag and exit the sub routine if necessary. Finally, 



4 
 

the user form includes a check box that will toggle screen updating for the histogram on and off. For 
many iterations or in other circumstances when speed is desirable, unchecking this box speeds up the 
simulation significantly, but the default value is set to checked because it is fun to watch the histogram 
update in real time throughout the Monte Carlo routine. 

In my tests, I found that it takes about one minute for every 1,000 iterations when the screen updating 
box is unchecked and about two minutes per 1,000 iterations when checked.  Leaving the box checked is 
preferred because the extra minute is a small price to pay to see the graphs update. However, I 
understand some people might not have that much time to run the iterations. A screen shot of the user 
form is included below: 

 
 

The programmatically created histogram, revenue breakdown, and growth curve displaying the results 
of the last simulation are also shown below: 



5 
 

 

A single iteration of the Monte Carlo simulation uses the RandBetween function over the low to high 
range on each of the three input assumptions. In order to maintain good resolution on the random 
number selection, the Long type inputs are multiplied by 100 and rounded before calling the 
RandBetween function. The result is then divided by 100 again before being re-input into the model to 
make that iteration’s projection. The iterations are recorded in the data tab (which is hidden in the 
model and also cleared from all previous data at the beginning of each simulation) and graphed in the 
graphs tab. Then the user can view the histogram and determine the validity of her assumptions and the 
most likely scenario. At this point she will want to alter her original assumptions if necessary, make any 
manual edits to the balance sheet, and either run a new Monte Carlo simulation or hit the rebalance 
button to get her final share prices.  

Now for the fun part—the struggles with the actual code behind the simulation, buttons, user form, and 
chart object. 

Learning and Difficulties 
Creating code to insert the graphs was the most difficult part. It took a lot of research and trial and error 
to figure out how to do it. Originally, I thought I would just put all the data in a data area that was 
already coded to populate existing graphs. After talking to you, I got the impression that you wanted me 
to make the graphs appear as part of my VBA code. That was a much more difficult graph, and since I 
wanted it to appear in a logical place in the model, I couldn’t just use Charts.Add to make a new tab for 
a chart object. It took a lot of recording macros, research, and trial and error to get the code to create 



6 
 

the graph and format it correctly for each simulation (as well as check for its existence and delete it if 
necessary before creating a new one). 

Even after all that, I still could not find a way to properly configure the msoShadow property the way I 
wanted to – setting this property did not crash the code, but the shadow would not display – so as this 
was just a simple cosmetic feature that had nothing to do with the core functions of my project, I left it 
out to become a topic of research for another day. Visuals are obviously less important than the 
functionality of the model, and it still works and looks great without the shadow, but I feel like the 
shadow just makes it look a little more finished, professional, and trustworthy. 

Assistance 
I obviously used my VBA Modelers book and the internet quite a bit. Googling is really the fastest way to 
figure something out. If I have a question, the chances that someone else has had the same question are 
pretty high. I also got some help with figuring out some of my graph problems from my husband. But the 
only code I copied was from our previous assignments and the documents from class you loaded on 
Learning Suite. 


	In Search of a More Accurate Share Price
	Executive Summary
	Implementation Documentation
	Learning and Difficulties
	Assistance


