Liberty Security Summarizer

Jacob Bengtson

Winter 2014

Executive Summary

Liberty Security is a security sales and monitoring company that is based out of Edmonton, Alberta
Canada. Nathan Baldry, one of the two owners, married my wife’s cousin 7 years ago. Before they were
married he was my roommate for a year.

One of the secretaries at Liberty is in charge of creating a summary document of all the sales and
cancellations that happened over the past month. She gets these numbers from their CRM system which
outputs a csv file for sales and cancellations of the indicated period.

The purpose of this project is to automate the summarizing process so that what was once a 2 to 3 hour
task can be accomplished in a matter of seconds. My project allows the user to select the appropriate csv
files from their directory. It then proceeds to summarize the information and put into the desired types of
tables that our find on the summary worksheet.

Implementation

[used a lot of global variables for this project because [wanted to create a bunch of different sub
procedures to keep the main controller of the program clean and easy to track. Below are all the global
variables I used with an explanation of what each variable is used for.

Global Variables

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

Dim

filePath As String

'the filepath of the crm output file

cancelFilePath As String

'the filepath of the cancel crm output file

summaryWb Zs Workbook

'the workbook where the summary will be created

crmiWb As Workbook

'the workbook of the crm output

cancWb As Workbook

'the workbook of the cancel output

cancWs As Worksheet

'the workshet of the cancel worksheet

dataWs As Worksheet

'the worksheet where Lisa can add sales reps and so forth
summaryWs As Worksheet

'the worksheet where the data will actually be summarized
crmWs As Worksheet

'the worksheet that holds the crm output

salesReps () As New clsSalesRep

'array of sales reps names

salesRepsRange As Range

'range of salesReps

cancenlRange As Range

'range of cancel reasons

cancel () As New clsCancel

'array of cancel reason

promRange As Range

'range of promotions

campaigns () As New clsCampaign

'array of clsCampaign objects

numHomeCancel As Integer

'number of home accounts that have been canceled
numShowCancel As Integer

'number of show homes that have been canceled
numCancelRange As Range

'range of cancel cells on crmiWs

numCancel As Integer

'total number of cancels, it is the sumb of show home and regular home cancelations
periodEnd As Date

'the last day of the period

jjCancels As Integer

'the total number of cancels for J&J Northstar accounts
jjSales As Integer

'the total number of sales for J&J Northstar accounts
sumDate As String

'this is the end date of the period that is being summarized

Below is the summarize sub procedure. It served as the main controller of my program. It calls several
different sub procedures that will be described throughout this implementation section.

Main Controller

'This is the main controller for the program
Sub summarize (control As IRibbonControl)
Dim continue As Boolean
Dim x, y, z As Integer
'counters to be used

sumDate = InputBox("Please enter the end date for the period that is being summarized"”, "END DATE", "Format: Feb-14")

'get the filepath of the crm sales output
MsgBox ("Select the sales report")
filePath = getFilePath()

If filePath = "" Then Exit Sub

'get the filepath of the crm cancel output
MsgBox ("Select the cancel report")
cancelFilePath = getFilePath()

If filePath = "" Then Exit Sub

'set file variables

Set summaryWb = ActiveWorkbook

Set dataWs = summaryWb.Sheets (1)

Set summaryWs = summaryWb.Sheets(2)

Set cancWb = Workbooks.Open (cancelFilePath)
Set cancWs = cancWb.Sheets (1)

Set crmWb = Workbooks.Open(filePath)

Set crmWs = crmWb.Sheets (1)

'select range of sales reps and set them to salesRepsRange
dataWs.Parent.Activate
dataWs.Select

'Put sales reps in salesReps array
Set salesRepsRange = Range (dataWs.Range ("a3"), dataWs.Range ("a3").End(x1Down))
For Each cell In salesRepsRange
ReDim Preserve salesReps (x)
salesReps (X) .name = cell.Value
XxX=x+1
Next
x =0

'select range of cancellation codes and put in array
Set cancelRange = Range (dataWs.Range ("B3"), dataWs.Range ("B3").End(x1Down))
For Each cell In cancelRange
ReDim Preserve cancel (x)
cancel (x) .name = cell.Value
Xx=x+1
Next
x=0

'select range of promotions and put in campaigns array
Set promoRange = Range (dataWs.Range ("C3"), dataWs.Range ("C3").End(x1Down))
For Each cell In promoRange
ReDim Preserve campaigns (x)
campaigns (X) .name = cell.Value
Xx=x+1
Next
x=0

'use functions to populate arrays of created classes with proper amounts
continue = calcCancels

If continue = False Then Exit Sub

continue = calcCampaigns

If continue = False Then Exit Sub

continue = calcSalesReps

If continue = False Then Exit Sub

'activate the summary worksheet
summaryWs.Activate

'in this next section, i add a row to each table and then get and add the appropriate values for each row
runningTotCAP summaryWs.Range ("B47")
fillCampaigns

runningTotCAP summaryWs.Range ("B80")
fillSalesReps

runningTotCAP summaryWs.Range ("B98")
fillCancellations

singleCAP summaryWs.Range ("B17")
£i1130

singleCAP summaryWs.Range ("B7")
fillLibOverview

singleCAP summaryWs.Range ("B25")
fillShowHomeAccounts

runningTotCAP summaryWs.Range ("B38")

‘close the workbooks that were being used
crmiWb.Close
cancWb.Close

End Sub

One of the difficulties that I faced in creating this project was how to associate Cancellations, Sales Reps,
and campaigns with the correlating amounts for each. I decided to create three different classes named
clsCancel, clsSalesRep, and clsCampaign that hold a string name value as well as an integer. Each class
also has a method on it that when called adds 1 to the integer value. Below is the Sales Rep class.

clsSalesRep
Option Explicit
Private repName As String
Private repSales As Integer

'Getter and setter for rep name

Public Property Get name () As String
name = repName

End Property

Public Property Let name (n As String)
repName = n

End Property

'Getter and setter for rep sales

Public Property Get sales() As Integer
sales = repSales

End Property

Public Property Let sales (s As Integer)
repSales = s

End Property

'Adds a sale to the total number of sales this rep has
Sub addSale()

repSales = repSales + 1
End Sub

To start off [needed three things from the user: (1) the CRM output file that contains all the sales from
the desired period, (2) the CRM output file that contains all the cancelations from the desired period, and
(3) the end date of the sales/cancellation period. I used a simple input box to obtain the end date.

I created the following method to obtain the file path of both output csv files.

getFilePath
L

'This function gets the file path for which document you want to summarize
Function getFilePath() As String
Dim fd As Office.FileDialog
Set fd = Application.FileDialog(msoFileDialogFilePicker)
If fd.Show = True Then
' the user chose a file
getFilePath = fd.SelectedItems (1)
Else
' the user pressed cancel
getFilePath = ""
End If
End Function

It returns the file path as a string, unless cancel is pressed then the summarize sub procedure is exited as
shown in the following section of the summarize sub procedure.

'get the filepath of the crm sales output
MsgBox ("Select the sales report")
filePath = getFilePath()

If filePath = "" Then Exit Sub

'get the filepath of the crm cancel output
MsgBox ("Select the cancel report")
cancelFilePath = getFilePath()

If filePath = "" Then Exit Sub

The next step was to populate two different arrays with all the names of the three different variables we
are dealing with: Sales Reps, Campaigns, and Cancellations. These can be found on the “Data Control”
worksheet of the summary workbook. I made this dynamic so that the company could add or delete any
one of the three variables types. Below are the lists of different types of instances for each class.

L ILIBERTY

Al Michalchuk Collections / Non Payment Alarm.com Lead

Hailey Litchfield Show Home Brookfield Customer (Sold)

Jared Steed Move Outside Canada Brookfield Show Home

Justin De Rush Move Within Canada Customer Referral

Lisa Schwager Deceased Door to Door

Nathan Baldry Competitor Switchover DTD - Family & Friends

Pat Kickham No Perceived Value Employee Referral

Russell Keddie Pull Equipment / Rip-Out Family/Friends

Sarah Depew Closed Business Homeshow

Taylor Wolsey Moved HOUSE to PTRON Homexx Show Home

Troy Cole Retirement Home HOUSE - Move Outside (1) Year

D2D Accounts J&J Northstar HOUSE - Move Within (1) Year

J&J Northstar Accounts HOUSE - Takeover Outside (1) Year
HOUSE - Takeover Within (1) Year
HouseMaster

Insure Your Way Inc.

InterNet Search

J&J Northstar HOUSE Accounts
Landmark Customers (Sold)
Landmark Employee

Landmark Show Home - Calgary
Landmark Show Home - Edmonton
Liberty Security Website
Meadows Park Project

PERS Customer Accounts

Self Generated

Twilite Music

UrbanAge Show Home

Below is how a populated the variables. I selected the range using the xIDown method, and then using a
for each loop I redimmed the array of each class and then added the name of that specific instance of the

class.

'Put sales reps in salesReps array
Set salesRepsRange = Range (dataWs.Range ("a3"), dataWs.Range ("a3").End(x1lDown))
For Each cell In salesRepsRange
ReDim Preserve salesReps (Xx)
salesReps (X) .name = cell.Value
X =x+1
Next
x =0

'select range of cancellation codes and put in array
Set cancelRange = Range (dataWs.Range ("B3"), dataWs.Range ("B3").End(x1Down))
For Each cell In cancelRange
ReDim Preserve cancel (x)
cancel (x) .name = cell.Value
X=x+1
Next
x =0

'select range of promotions and put in campaigns array
Set promoRange = Range (dataWs.Range ("C3"), dataWs.Range ("C3").End(x1Down))
For Each cell In promoRange

ReDim Preserve campaigns (x)

campaigns (X) .name = cell.Value
X=x+1

Next

x=0

The next task was to populate each class instance with the appropriate value from the crmWs worksheet.
[created three procedures, one for each type of class. All three are virtually identical accept that the sub
procedure for filling clsCancel classes with values also sums the total amount of cancels as well as show

home cancels (statistic that was requested by the company). Below is this function.

calcCancels

'Figure out the amount of cancels as well as well as number of show homes cancelled and non show homes cancelled

Function calcCancels() As Boolean
cancWs.Parent.Activate
cancWs.Select
'look up the column titled "Cancelled Reason"
Rows ("1:1") .Select
Set cell = Selection.Find (What:=UCase (Trim("CANCELLATION REASON")), After:=ActiveCell, LookIn:=xlFormulas,

LookAt:=x1lWhole,

Set numCancelRange = Range (cancWs.Range (cell.Address).Offset (1, 0), cancWs.Range(cell.Address).Offset (1, 0).End(x1lDown))

For Each cell In numCancelRange
If Not Len(Trim(cell)) = O Then
For Each clsCancel In cancel
'Add one cancel to the clsCancel that matches the cell value
If UCase (Trim(clsCancel.name)) = UCase (Trim(cell.Value)) Then clsCancel.addCancel
'keep track of number of show homes canceled

If UCase (Trim(clsCancel.name)) = "SHOW HOME" And UCase (Trim(cell.Value)) = UCase (Trim(clsCancel.name)) Then
numShowCancel = numShowCancel + 1
End If
Next

'keep track of total number of cancels
numCancel = numCancel + 1
End If

Next

'figure out number of non show home cancels

numHomeCancel = numCancel - numShowCancel

calcCancels = True

End Function

Sear

Some unique aspects to this sub procedure are:

1. Tused the Selection.Find method to look up the appropriate column of cancellations in the crmWs
worksheet. I did this just in case the CRM created a csv file with the attributes for each
sale/cancellation in a different order.

2. Throughout my code you will probably notice the use of trimming and forced capitalization to
ensure that hanging spaces and random capital letters aren’t throwing off my comparison logic.

3. The first if statement checks to see if the value in the current cell matches the name of the current
cancellation, the second checks to see if the value in the cell is “SHOW HOME” and if the cell value
and the class name match. If the second if statement is met numShowCancel has 1 added to it.

4. The calcCancels sub procedure is pulling values from the cancWs instead of the crmWs that the
other two sub procedures pull values from.

5. Ifthe row had a value in the cancellation reason column then that means there was a cancellation,
so numCancel has 1 added to it.

Below are the other two functions which are very similar, accept they are doing the same process for
clsSalesRep and clsCampaign.

'this functions fills the array campaigns() with how many times they occur
Function calcCampaigns () As Boolean
Dim campRange As Range
crmiWs.Parent.Activate
crmis.Select
'loock up the column titled "campaignname"
Rows ("1:1") .Select
Set cell = Selection.Find (What:=UCase (Trim("CAMPAIGNNAME")), After:=ActiveCell, LookIn:=xlFormulas, LookAt:=x1lWhole, &
Set campRange = Range (crmiWs.Range (cell.Address) .Offset (1, 0), crmWs.Range (cell.Address).Offset (1, 0).End(x1lDown))

For Each cell In campRange
If Not Len(Trim(cell)) = O Then
For Each clsCampaign In campaigns
If UCase (Trim(clsCampaign.name)) = UCase (Trim(cell.Value)) Then clsCampaign.addCampaign
Next
End If
Next
calcCampaigns = True
End Function

'this function populates the array of sales reps with how many sales they've had
Function calcSalesReps() As Boolean
Dim repRange As Range
crmiWs.Parent.Activate
crmis.Select
'look up the column titled "campaignname"
Rows ("1:1") .Select
Set cell = Selection.Find(What:=UCase (Trim("REP NAME")), After:=ActiveCell, LookIn:=x1lFormulas, LookAt:=xlWhole, Searc
Set repRange = Range (crmWs.Range (cell.Address) .Offset (1, 0), crmWs.Range (cell.Address).Offset(1l, 0).End(x1lDown))

For Each cell In repRange
If Not Len(Trim(cell)) = O Then
For Each clsSalesRep In salesReps
If UCase(Trim(clsSalesRep.name)) = UCase (Trim(cell.Value)) Then clsSalesRep.addSale
Next
End If
Next
calcSalesReps = True
End Function

Now came the final step. For each different table on the summarization work sheet I needed to add a row
either on the far right or between the running total column and the second to last column. I hard coded
this logic and made two different sub procedures to copy and paste columns in these two different ways.
Below are the two sub procedures.

'This sub procedure copies and pastes a single continuous column
Sub singleCAP(rng As Range)
rng.End (x1ToRight) .Select
Range (ActiveCell, ActiveCell.End(x1Down)) .Select
Selection.Copy
ActiveCell.Offset (0, 1) .Range("Al").Select
ActiveSheet.Paste
ActiveCell.Offset (0, -2).Range("Al").Select
Application.CutCopyMode = False
Selection.Copy
Selection.Offsetc (0, 1).PasteSpecial Paste:=xlPasteFormats, Operation:=xlNone, _
SkipBlanks:=False, Transpose:=False
Application.CutCopyMode = False
ActiveCell.Offset (0, 1).Value = sumDate
End Sub

'This sub procedure copies and pastes a running totals column
Sub runningTotCAP(rng As Range)
summaryWs.Activate
rng.End (x1ToRight) .Select
ActiveCell.Offset (0, -1).Range("Al").Select
Range (Selection, Selection.End(x1Down)) .Select
Range (Selection, Selection.Offset (0, 1)) .Select
Selection.Copy
ActiveCell.Offset (0, 1).Range("Al").Select
ActiveSheet.Paste
ActiveCell.Offset (0, -2).Range("Al").Select
Selection.Copy
Selection.Offsetc (0, 1).PasteSpecial Paste:=xlPasteFormats, Operation:=xlNone, _
SkipBlanks:=False, Transpose:=False
Application.CutCopyMode = False
ActiveCell.Offset (0, 1).Value = sumDate
End Sub

Each accept the far left top cell as a range, they then get to either the last column or the second to last
column using xIToRight and offset. They copy and past the needed section and then reformat the old
heading row using PasteSpecial.

[had to create these new columns and populate them with values in a certain order because of how
certain tables referenced values in others. Below is the portion of the main controller that all the sub
procedures were called in.

'in this next section, i add a row to each table and then get and add the appropriate values for each row
runningTotCAP summaryWs.Range ("B47")
fillCampaigns

runningTotCAP summaryWs.Range ("BEO")
fillSalesReps

runningTotCAP summaryWs.Range ("B98")
fillCancellations

singleCAP summaryWs.Range ("B17")
£i11JJ

singleCAP summaryWs.Range ("B7")
fillLibOverview

singleCAP summaryWs.Range ("B25")
fillShowHomeAccounts

runningTotCAP summaryWs.Range ("B38")

Each of the sub procedure that start with “fill” are calculating the total amounts for different
requirements as requested by Liberty Security. Below is an image of some of the tables that they were
populating.

[LIBERTY SECURITY ACCOUNTS OVERVIEW:

1279 1319
5 0
1 0
1273 1319
46 13
1319 1332

| J&J NORTHSTAR ACCOUNTS OVERVIEW:

‘ SHOW HOME ACCOUNTS OVERVIEW:

|*Free Monitoring Show Homes
|**Paying Monitoring Show Homes

|OVERALL HOUSE ACCOUNT OVERVIEW:

1399 1425 1464

34 46 13 93
1425 1464 1476

The table named “OVERALL HOUSE ACCOUNT OVERVIEW” if filled with references that calculate based
off of the first two tables.

fillCampaigns, fillSalesReps, and fillCancellations all fill tables that look like the following table:

-

Alarm.com Lead

Brookfield Customer (Sold)
Brookfield Show Home

Customer Referral

Door to Door

DTD - Family & Friends

Employee Referral

Family/Friends

Homeshow

Homexx Show Home

HOUSE - Move Outside (1) Year
HOUSE - Move Within (1) Year
HOUSE - Takeover Outside (1) Year
HOUSE - Takeover Within (1) Year
HouseMaster

Insure Your Way Inc.

InterNet Search

J&J Northstar HOUSE Accounts
Landmark Customers (Sold)
Landmark Employee

Landmark Show Home - Calgary
Landmark Show Home - Edmonton
Liberty Security Website
Meadows Park Project

PERS Customer Accounts

Self Generated

Twilite Music

IFNEIEN -

—
-~

Q= |O(N|= D= N[

-
-

QINIoN|o|o|= oo O|N|=|O|=|lo|lWw|o|k|ln|o|lw| o

-
-

ole(gv|o|e|un|le|w|o|e

(=1 [=]

gooco—n&ouowooaoooooooouoomuooo
gooa;ANOOO—‘U‘OLJOOOOOOONM—‘O\I&—*OO

UrbanAge Show Home

4
-
-
N
-

Below is the sub procedure for filling the above table with values.

'This sub procedure fills the summary worksheet with all the amounts of campaigns
Sub fillCampaigns ()

Dim cancRng As Range

summaryWb.Activate

summaryWs.Select

Columns (1) .Select

Set cell = Selection.Find(What:=UCase (Trim("CAMPAIGN")), After:=ActiveCell, LookIn:=x1Formulas, LookAt:=x1Whol
Set cancRng = Range (Range (cell.Address) .Offset (1, 0), Range(cell.Address).Offset (1, 0).End(x1Down) .Offset (-1,

For Each cell In cancRng
For Each clsCampaign In campaigns
If UCase (Trim(cell.Value)) = UCase (Trim(clsCampaign.name)) Then
cell.End (x1ToRight) .Select
ActiveCell.Offset (0, -1).Select
ActiveCell.Value = clsCampaign.number
End If
Next
Next
End Sub

The procedure searches in the first column of the summary worksheet for a row with the value of
“CAMPAIGN.” It then creates a range out of the subsequent list of campaign names. Using a for each loop,
each cell checks its value against the name of one of the clsCampaigns in the campaign array. If they
match, the value held in that object is added to the second to last row using a combination of xIToRight
and offset. Below are the sub procedures to fill the sales rep table and cancellation reason table. They
follow the same logic.

'sub procedure that fills all the cancellations on the summary sheet
Sub fillCancellations ()

Dim cRng As Range

summaryWb.Activate

summaryWs.Select

Columns (1) .Select

Set cell = Selection.Find(What:=UCase (Trim("CANCELLATION REASON CODE")), After:=ActiveCell, LookIn:=xlForm
Set cRng = Range (Range (cell.Address) .Offset (1, 0), Range(cell.Address).Offset (1, 0).End(x1lDown).Offset (-1,

For Each cell In cRng
For Each clsCancel In cancel
If UCase(Trim(cell.Value)) = UCase (Trim(clsCancel.name)) Then
cell.End(x1ToRight) .Select
ActiveCell.Offset (0, -1).Select
ActiveCell.Value = clsCancel.number
End If
Next
Next
End Sub

'sub procedure that fills the sales of all the sales reps on the summary sheet
Sub fillSalesReps()

Dim srRng As Range

summaryWb.Activate

summaryWs.Select

Columns (1) .Select

Set cell = Selection.Find(What:=UCase (Trim("SALES REPRESENTATIVE NAME")), After:=ActiveCell, LookIn:=xlFor
Set srRng = Range (Range (cell.Address) .0Offset (1, 0), Range(cell.Address).Offset (1, 0).End(x1Down) .Offset (-1

For Each cell In srRng
For Each clsSalesRep In salesReps
If UCase(Trim(cell.Value)) = UCase(Trim(clsSalesRep.name)) Then
cell.End(x1ToRight) .Select
ActiveCell.Offset (0, -1).Select
ActiveCell.Value = clsSalesRep.sales
End If
Next
Next

End Sub
L

[then had to add values to the other, more finicky tables. Filling the]] table consisted of adding up the
cancellation and sales rep classes that had “J&]J” in the left three characters of their names, and then
putting these totals in the table. Below is the sub procedure that does this.

'sub procedure that fills the summary table for J&J Northstar Accounts, also stores the val

Sub £i11JJ()
Dim jjRng As Range
summaryWb.Activate
summaryWs.Select
Columns (1) .Select

Set cell = Selection.Find(What:=UCase (Trim("J&J CUSTOMER ACCOUNT CANCELLATIONS")), Afte

cell.End (x1ToRight) .Select
For Each clsCancel In cancel
If Left(clsCancel.name, 3) = "J&J" Then
ActiveCell.Value = clsCancel.number
jjCancels = clsCancel.number
End If
Next
For Each clsSalesRep In salesReps
If Left(clsSalesRep.name, 3) = "J&J" Then
ActiveCell.Offset (1, 0).Value = clsSalesRep.sales
jjSales = clsSalesRep.sales
End If
Next
End Sub

Filling the table named “LIBERTY SECURITY ACCOUNTS OVERVIEW” was a process of looping through all
the cancellations that were not J&] homes and keeping track of which ones were show homes and not
show homes. [did this using if statements within a for each loop. I also had to count up all the sales that
were not of the J&] variety. I accomplished this using an if statement in a for each loop as well. Below is
the sub procedure that accomplished this.

'this sub procedure fills the liberty security accounts overview table
Sub fillLibOverview()

Dim x As Integer

Dim r As Range

summaryWb.Activate

summaryWs.Select

Columns (1) .Select

Set cell = Selection.Find(What:=UCase (Trim("LIBERTY SECURITY ACCOUNTS OVERVIEW:")), After:=ActiveCell, LookIn::

cell.Offset (4, 0).Select

ActiveCell.End (x1ToRight) .Select

For Each clsCancel In cancel

If Not Left (clsCancel.name, 3) = "J&J" And Not UCase (clsCancel.name) = "SHOW HOME" Then
X = X + clsCancel.number

End If

If UCase (clsCancel.name) = "SHOW HOME" Then
ActiveCell.Offset (1, 0).Value = clsCancel.number

End If

Next
ActiveCell.Value = X
ActiveCell.Offset (3, 0).Select

x =0
For Each clsSalesRep In salesReps
If Not Left(clsSalesRep.name, 3) = "J&J" Then

Debug.Print clsSalesRep.name
X = X + clsSalesRep.sales
Else
Debug.Print clsSalesRep.name
X = X - clsSalesRep.sales
End If
Next
ActiveCell.Value = X
End Sub

The last step was filling the table named “SHOW HOMES ACCOUNT OVERVIEW.” This required looping
through the range of listed show home names in the left column, trimming of either one or two asterisks,
taking the name before the first space and adding “SHOW HOME” to it, and then for each cell I had to loop
through the array of campaigns and check to see if the cell value and the class name equaled each other. If
they did I added the value to the second to last column and put it in the last column (last column was a
running total). There was one trick part to this though; Landmark campaigns had two different names in
the data base, Edmonton north and south. Therefore, in the row that was Landmark, if the clsCampaign
left 18 characters were “LANDMARK SHOW HOME” then [added the value to an intermediate variable
and at the end of the loop at added that value to the second to last column and placed the resulting value
in the last column of the Landmark row. Below is the sub procedure that accomplishes this task.

'sub procedure that fills the table named show home accounts overview
Sub fillShowHomeAccounts ()

Dim space As Integer

Dim x As Integer

Dim first As String

Dim showRng As Range

summaryWb.Activate

summaryWs.Select

Columns (1) .Select

Set cell = Selection.Find(What:=UCase (Trim("SHOW HOME ACCOUNTS OVERVIEW:")), After:=ActiveCell, LookIn:=xlFormulas,

Set showRng = Range (Range (cell.Address) .Offset (3, 0), Range (cell.Address).Offset (3, 0).End(x1Down) .Offset (-3,
For Each cell In showRng
space = InStr(l, cell.Value, " ")
first = Left(cell.Value, space)
If Left(first, 2) = "#**" Then
first = Replace (first, "#*w", n"w)
Else
first = Replace (first, "#*",6 "")
End If
For Each clsCampaign In campaigns

If UCase (Trim(first)) & " SHOW HOME" = UCase (clsCampaign.name) 2And Not "LANDMARK" = UCase (Trim(first)) Then

cell.Select

ActiveCell.End(x1ToRight) .Value = ActiveCell.End (x1ToRight) .Offset (0, -1).Value + clsCampaign.number

ElseIf UCase (Trim(first)) = "LANDMARK" Then

If Left (UCase (clsCampaign.name), 18) = "LANDMARK SHOW HOME" Then
X = X + clsCampaign.number
End If
End If

Next
cell.Select
ActiveCell.End(x1ToRight) .Value = ActiveCell.End (x1ToRight) .Offset (0, -1).Value + X
x =0
Next
End Sub

Lc

After that all that was left to do was close the workbooks that I opened and end the summarize sub

procedure.

Learning Outcomes and Conceptual Difficulties

When I set off to accomplish this task, one of the first problems that I ran into was getting proper
clarification from the client. I found that email was a very inefficient ways to get answers; therefore, I
quickly opted for phone calls to get the answers that I needed.

One of the major conceptual difficulties that I ran into was how to associate sales, cancellation, and
campaign values with the names of each of these categories. After thinking about it I figured that there
must be some way to create classes like you can in Java. I did some research and found out this was
possible. Creating classes to hold multiple values was one of the most useful things that I learned during
the project.

A long the way of completing this project I got very comfortable working with for each loops which I had
previously shied away from. [originally learned in java to do loops using counters so I used to always
default to this, but for each loops are much quicker to create and easier to interact with each variable
inside the loop. This was especially valuable because I was working with arrays.

One of the downsides to working with Arrays was that I had to loop through the array every time that I
wanted to find a specific type of class. | thought that there must be a better way to do this, like using a
map in java. It turns out there is. Looking back I should have used a collection. However, because I was
already 3% the way done by the time that [discovered collections even existed, | opted to stick with arrays
and keep collections in mind for the future.

The main other problem that I faced was the scope of the project. There were many different custom
types of summaries that Liberty wanted and [had to create custom sub procedures for each one to pull
that exact information that they wanted. I got very good at using if statements in VBA and was as the End
and offset methods.

Assistance

[was able to complete the project without substantial help from anyone.

