
Stephen Jensen
IS 520
Final Project
12/11/14
Personal Budget

Executive Summary

For my personal project I decided to work on my personal budget. I designed this project to
help alleviate two pain points I have, first categorizing my spending and second analyzing home
and car loans.

Keeping a budget is something that I take very seriously. I really try to keep track of where I am
spending money and for areas where I can save. To track my spending, I use a VBA code to
categorize each transaction I make. In the past, I would spend three to four hours a month
manually entering each transaction into each designated category. Needless to say this process
is tedious and frustrating.

Along with tracking my spending, I am also concerned about getting a car loan and home loan. I
currently have a car loan and will be looking to get a home loan in the next two to three years.
Being able to quickly crunch the numbers for different loan amounts, down payments, interest
rates, and terms is something that I would find very useful now and in the future. I also am very
interested to see how much interest I will save over the life of the loan by making extra
payments each month on my loan.

The first part of my system is designed to ease the annoyance of manually categorizing each of
my transactions. Now all I need to do is download my credit card transactions from my bank
and put them in a sheet in my workbook. Then simply click the button “Input Transactions” and
the code will automatically place each transaction in the desired month and category. This code
will save me three to four hours each month and allow me to track my spending month to
month.

The second part of my system allows me to quickly analyze loans based upon the loan amount,
down payment, interest rate, and terms. This system allows me to enter these four inputs and
then runs a sensitivity analysis on each input. That is it shows me how the monthly payment
and total interest paid varies if each input were to increase or decrease. I also included an
amortization schedule based off of those four inputs. The amortization schedule also allows me
to enter an extra payment amount, how many months I will make that extra payment and the
number of months remaining on the loan then calculates how much interest I will save. This will
allow me to analyze loans quickly and intelligently.

This system will be very helpful for me to keep track of my spending and analyze home and car
loans.

Implementation

Organizing my Spending
The first part of my system is categorizing my spending from month to month. In order to do
this, I first download my credit card statements and put them into a sheet in my workbook
labeled “Trans.” The following screen shot shows the “Trans” sheet with each expense item.

Then all I have to do is click the “Input Transactions” button and the system will put each
expense item in the designated month and category. As seen on the above screen shot, I have a
tab labeled for each month. Each of these tabs looks like the following screenshot. These sheets
have a column for each type of expense I want to keep track of.

In order to make this code work, I had to loop through each transaction on the page. I used the
left function as well as select case statements. The left functions captured the month and name
of each store. Based on the month and store the case statements then directed where each
transaction should be put. The following screenshot shows an example of the left function and
case statement for the name of the store.

The final step is consolidating each month onto one sheet so I can easily view my spending by
month. The next screen shot shows this consolidated page.

This page is a table that allows me to easily look at each expense and see how they fluctuate
from month to month. The sum transactions button in the top right corner is attached to the
code that pulls the transactions from each spreadsheet. For this part of the code I used three
for loops that scanned through each expense sheet, then looped through each column of
expenses, then looped through each expense category on the consolidated “Budget” sheet to
place the sum total for each month in the proper category. This is a really helpful part of code
because otherwise I would have to manually link each individual box on the consolidated
“budget” sheet to each expense total on each month tab. That is a very long process that now
only takes a few seconds with a VBA code.

Loans
The next part of my system deals with analyzing loans. One sheet is for analyzing how changing
the four main inputs of loan amount, down payment, interest rate, and length of the term
affect how much my monthly payment is and what the total interest paid will be. The next
sheet is an amortization schedule that calculates how much interest I can save over the life of
the loan, depending on the remaining life of the loan, how much extra I pay and the number of
months I make the extra payment.

The “sensitivity” sheet examines the difference in total interest paid and monthly payments
based on the four main inputs of loan amount, down payment, interest rate, and length of the
term. The following screenshot shows how the page is setup.

The inputs on the top left are what I can change. The outputs just below show the total monthly
payment and total interest paid. The tables then show how the monthly payment and interest
change if I were to increase or decrease any one of the inputs. The price, down payment, and

interest rate (table on the right out of screenshot) each vary from half to double the current
input in 10% increments. The highlighted row is what the current input is. The term varies from
12 to 60 months in 12 month increments if it is a car loan, or from 180 to 360 months if it is a
home loan. The buttons on the bottom left allow me to run just one of the sensitivity tables
leaving the rest unchanged or run them all at the same time with the “Run All Sensitivity.”

To create the sensitivity tables, I wrote four different subs that are all very similar. First it is
important to mention that the formula in the monthly payment cell in the above screenshot is
instrumental in writing this code. The formula is =PMT(IntRate/12,Term,-Loan). Then the
formula for the total interest paid is =(Payment*Term)-Loan. When one input changes so does
the monthly payment and total interest paid. So each sensitivity sub loops through and
changes each input and then places each different monthly payment and total interest paid in
the correlating table. Then the last part of the sub resets the input to the original input and
highlights the row on the table that matches the original input. The following screenshot shows
the for loop that changes the input.

The “Run All Sensitivity” button simply calls each of the individual sensitivity subs.

The next sheet in my workbook is the amortization schedule. This schedule allows me to build
an amortization schedule and analyze how adding extra payments can affect how much interest
I save. The following screenshot shows an example of the table that is created.

This shows that this code will first create an amortization schedule based upon the user inputs
in the upper left corner of the screen. Then if the user decides to add extra payments the code
will recalculate the table adding in the extra payments and show how much total interest is
saved and how many months are reduced. This example shows that if I added $100 to the next
16 monthly payments with 20 months remaining on the loan, then I would save $46 of interest
and the term would be reduced by one month. These numbers become much more significant
as the loan amount, interest rate, and term increases.

The first part of this code clears the old table by using end(xldown). The next part creates the
new table with the inputs by specifying the number of rows using the length of the term. Row 1
of the table has hard coded formulas that do not get touched by the code. The code then
copies and drags these formulas down the length of the table. The screenshot below displays
this part of code.

The next part of the code uses the inputs of extra payment, remaining life of the loan, and
number of months the extra payment is used to create a new amortization schedule. The first
for loop places the number of extra payments in the extra payment column. The next for loop
finds where the first loan amount on the right hand column equals zero. It then makes the last
payment (column E) equal to the remaining loan amount plus the interest due to make balance
out the total loan amount to zero. The last for loop clears out the remaining contents that have
a negative balance. Then the number of months the loan is reduced is found by subtracting the
new term from the original term. Also the code uses the sum function to sum the total interest
paid with the extra payments and places that function in cell b21. Then lastly the interest paid
with the extra payments (cell(b21)) is compared to the interest paid without extra payments
(cell(b13)). This is all shown in the code below.

Learning
This project gave me the opportunity to learn many new things. One of the most valuable
lessons I learned is that I can teach myself VBA code by proactively researching things on my
own and by trial and error. I also learned that VBA code can be used to make long, tedious tasks
quick and easy.

For this project, I got most of my help from looking up bits of code from both the internet and
the book. I did not get much help from other resources like friends or classmates. The book was
very helpful in my process. I was able to look up how to write an example sensitivity code and
then modify it to suit my needs. Looking up the answers on my own was frustrating at times but
taught me the important lesson that I can teach myself. This skill will come in handy later in my
life as I start my career.

I also learned that VBA takes lots of effort and time through trial and error. The more I worked
at the code the more naturally the logic came to me and the more efficient I became. Tasks that
were very difficult for me at the beginning of the project like counting the number of rows in a
range, or setting a range to match the amount of data on a worksheet became easier at the end
of the project. There is no substitute for trial and error when trying to learn VBA code.

The last thing I learned is that VBA can be used in real life situations to make long and
frustrating tasks quick and easy. For example, while I was working on the project I wanted to
zoom each sheet in my workbook to 30%. Rather than go sheet by sheet and manually do it, I
quickly wrote a VBA code that looped through each sheet and did the task for me.

As I mentioned previously, the task of categorizing my expenses each month took two or three
hours and now I can do it in the click of a button. This budget is something that I will use the
rest of my life because of how easy it is. I will also be motivated to continue to learn VBA
because I saw just how useful it can be in a real life situation.

Difficulties
I faced several difficulties throughout this project. I wanted to accomplish a few things with this
budget that I wasn’t able to because I lacked the ability to write the code. Another problem I
ran into was working on something just to realize that I wanted to go a different way with the
project.

I initially set out to download my credit card transactions from the website using VBA code. I
was able to log on to the website with my username and password but could not navigate the
site well enough to get to the area where I could download the transaction report. The
following is a screenshot of the code I used to log on to my bank account.

I also wanted to send a text message to myself, reminding me when I need to pay credit cards
and other bills. I could write the code that sends me the message; however, could not create
the code to that would send me message on a specified day and time without me opening the
workbook. Here is a screenshot of the code I wrote to send me a text message.

Along with getting stuck on certain aspects of code, I also spent a lot of time working on things
that didn’t ultimately make it in my final deliverable. For example, I spent a lot of time working
on creating user input forms then deciding that I really didn’t need the input forms. This
happened a few times throughout the project, causing me to spend a lot of extra time working
on it.

Overall, the project was a great learning experience for me and something that I will use for the
rest of my life.

