
Implementation
The queuing simulation is simple to use. The model (1) accepts user inputs to (2) run a

number of calculations and (3) report on the results. The model is highly flexible,

informative, and user friendly. This model will be extremely useful in the analysis and

evaluations of queue situations in government service.

Upon opening the model, the user will see the model instructions, located on the

“Explanation Tab.” The user will follow the simple instruction set.

1. The user will first select the custon tab on the Excel ribbon, entitled “Run

Simulation.” This tab contains two buttons: “Enter Inputs” and “Run Simulation.”

The first button will take the user to the “Report” sheet, where the user will enter

inputs and see the simulation results. The second button will run the simulation

when the appropriate inputs are entered.

2. On the “Reports” sheet, the user will see a various sections and colored cells. The

sections at the top of the sheet contain yellow colored cells. These indicate cells

that require user inputs.

In the Inputs section, the first two inputs are actually informed by the two section

on the right of the sheet. Time between Arrivals and Service Time contain

statistical distributions of inputs. The inputs Customer Arrival Rate and Mean

Service Time use LOOKUP functions to determine the arrival rate and service time

for each customer.

The following inputs will be entered by the user:

a. Customer Arrival RateThe rate at which customers will arrive. Informed

by distribution table Time between Arrivals located on right.

b. Mean Service Time-The time it takes to serve each customer Informed by

distribution table Service Time located on right.

c. Number of servers- The number of servers available to assist customers.

d. Maximum allowed in queue-The maximum number of customers allowed

in line. One this number is reached, additional customers will be turned

away.

e. Simulation run time- The length of time in which servers will assist

customers. Customers will cease to arrive once this time has been

reached.

f. Number of iterationsThe number of times the complete simulation will

be run. A minimum of 200 iterations is considered best practice.

3. Once the inputs have been entered, the user is ready to run the simulation. On

the “Run Simulation” tab of the ribbon, click the button “Run Simulation.”

4. Once the simulation has run, the results will be displayed in the orange cells of

the “Reports” sheet. Currently, there are 8 outcome cells, indicated by the color

orange. These cells require no user input and will be populated by the model.

The model outputs are:

a. Time last customer leaves-The time when the last customer completes

service and exits the system.

b. Average Time in Queue per Customer-The average length of time a

customer spends in line.

c. Maximum Time in Queue of all Customers-The longest amount of time a

customer spent in line.

d. Average Number of Customers in Queue-The average number of

customers in line at a given time in the simulation.

e. Maximum Number in Queue-The largest size of the line during the

simulation.

f. Percentage of Time Servers are Busy-The rate at which servers are

occupied serving customers.

g. Number of Customers Turned Away-The amount of customers turned

away due to the queue being at maximum capacity.

h. Percentage of Customers Turned Away-The percentage of all arriving

customers that are turned away.

5. The green cell on the “Reports” sheet indicates the optimized solution to the

simulation. In this case, Number of Customers Processed.

Assistance
I had a lot of assistance on this project, since it is a project found in the class textbook. I

have had a difficult time in this course and wanted to automate a model with which I was

already familiar. In my Quantitative Decision Analysis class I created queueing simulation

using worksheet functions. I was pleased to see that the textbook contained a queuing

simulation in chapter 29. I read the chapter, attempted all parts of the assignment on my

own, and then checked my codes against those in the example. I required a lot of

clarification and correction from the textbook. As such my model is nearly identical to

that found in the book. I then attempted the exercises at the end of the chapter (which

contain no instructions). I did not do very well on these, though I have left in the model

m code to document my attempts.

Learning and Conceptual Difficulties
This class has been difficult for me, so this project was quite challenging for me; however,

it also clarified several concepts for me. First, the project clarified the idea of event-based

programming. I was initially confused by the concept, but have found that it is actually

quite simple. Each event is scheduled to assign values to certain variables. Events often

depend on counter variables, on which this model relies greatly. The counters necessary

to record the number of arriving customers, the size of the line, and the total amount of

time that has passed in the simulation. The counters are crucial to the execution of each

step.

I also solidified my understanding of the diverse type of variables and arrays. This model

relies on a large amount of globally declared variables, dimensioned as arrays, strings,

single, integer, and variant. This project helped me understand when each of these

variables is appropriate. I also encountered the difficulty of global variables. Globally

declared variables affect any sub-procedure in which they take part. This concept gave

me difficulty as I attempted to keep the events of my sub-procedures in the proper order.

This project gave me a great deal of trouble. I struggled to keep my loops in proper order

and function. Since the model is event based, each event must be repeated several times.

In this aspect I relied heavily on the textbook to correct me and keep my loops organized.

One aspect I wanted to include was a Monte Carlo simulation of the model. This would

accept the Iteration user input and repeat the entire simulation that according to the

input. The statistical results of each iteration would then be recorded on a summary

sheet. I was able to input a simple Do loop to repeat the simulation the specified number

of times, but was unable to update the summary sheet as desired. I could not get the

model to preserve the outputs of the previous iterations. Instead, the model would take

the most recent outputs and place those in the results of each iteration. I spent many

hours trying to correct this by means of different methods, including locally declared

variables, various loop types, and the placement of the code. In the end I was unable to

correct this procedure before the assignment deadline.

Another area that gave me difficulty is simulating the number of arrivals that determine

the line is too long and turn away, or balk. To attempt this, I declared new variables: the

balk rate (or percentage of customers who may balk) and the required line length that

triggers arrivals to balk. While I could calculate this, I found that it wasn’t executing

correctly. The code caused far too many arrivals to balk. I could not figure out why this

occurred and commented out the relevant code.

