
Implementation Documentation

To begin, I first researched which events are the most common which we serve at BYU Guest Services. I

gathered the top ten or so most common events and created a custom ribbon which would allow the

user to quickly select the appropriate template to use. I used the custom ribbon editor to import images

relevant to the ribbon buttons and which would be easy for the user to recognize. Additionally, I created

three generic templates (one day, one week, and two weeks) which the use can select for the less

common events that do occur occasionally. An image of the custom ribbon can be seen in Figure 1.

Figure 1 Custom Ribbon

I wanted the report templates to be robust and so much of my work was focussed on creating a

standardized spreadsheet. Although little VBA was involved in creating this standardized spreadsheet, I

wanted to note that certain aspects of the spreadsheet were designed to interact with the automation

that I will describe later on. Figure 2 on the following page is an image of the basic outline of the report

template. The light yellow cells interact with the auto-fill feature of the spreadsheet and pull from the

“Event Info” tab database.

Figure 2 Report Template

Once the appropriate template is selected, the user then verifies the contents of the yellow highlighted

cells to ensure that information regarding the customer is accurate and up to date. For example, ticket

sales price must be updated on an event by event basis but email and phone contact information is

stored and automatically updated when the event is selected. If the user chooses to use a generic

template, the information is not pulled immediately for the customer. Instead, the user must select the

desired event from the drop-down menu in the “Event” cell, and then click Auto-fill. Many different

prompts can occur at this point. If the Event does not already exist in the database, the user will be

promted to decide whether to create a new event, or select one that is already in the database.

Alternatively, the user can simply cancel the prompts and enter the information for a single-time use of

the spreadsheet without saving information for future use. Figures 3 and 4 shows this interface.

Figures 3 and 4

The majority of the VBA coding for this project involved the buttons “Auto Fill,” “New Event,” and

“Update Event” as seen in Figure 4 above. The “Auto Fill” button executes a sub procedure which

searches the database on the “Event Info” tab for information regarding a desired event. If the Event is

not found, the user is promted to select a different event or create a new one as discussed previously. If

the event returns a match, then the information stored in the database is pulled and inserted into the

template in various locations. The sub procedure searches the template for specific key words which

indicate where the desired destination cells are (Event, Sponsor, Account#, Contact, etc.) and then

concatenates the results onto the existing fields.

The “New Event” button brings up the user form seen in Figure 5 below. This user form prompts the

user for some basic information regarding the new event. Certain fields are required while others are

optional, and the user is show how fields should be formatted. The VBA code behind the user form

prevents the user from creating an event that already exists by comparing the event name with the

event names stored in the data base. The code also verifies that the required fields are filled and

prompts the user when a mistake is made. When the “Save” button is selected in the user form, a new

record is added to the database, and then the database is sorted so as to facilitate the drop-down

feature in the Event cell on the spreadsheets. Figure 6 shows the Database and a recently inserted

record. Also, after executing the “New Event” button code, the user is taken to the line of the new

record in the database so that they can verify that information was input correctly.

Figure 5 Add Event User Form

Figure 6 New Record and Visual Verification

The “Update Event” button allows the user to make edits to the currently selected Event. VBA coding

prevents the user from renaming an event to a name that is already in use, and the code gives

appropriate prompts should the user try to use the “Update Event” record with a non-existing record.

Figure 7 below shows the user form that autopopulates with the information that was previously stored

in the database. Note that the “Save” button is hidden and that now, an “Update” button has become

visible instead. Also, the user form title is updated with the current event name and the event in

question is highlighted in the database to allow the user to verify changes were made appropriately.

Figure 7 Update Event Information

Finally, the “Print Report” button seen in Figure 1 allows the user to quickly print the report for

customer use. Areas irrelevant to the customer are trimmed off and the report is saved as a PDF ready

to be sent to the customer. Figure 8 has the final product.

Figure 8 PDF Report for Customer

Learning and Difficulties

This project was a great opportunity to not only work my way through a difficult and challenging

problem, but it served as an opportunity to experience VBA programming in the “real world.” My initial

plan for this project was to automate all aspects of the accounting at my work. I knew that some human

intervention would be necessary, but I thought that for the most part, things could just be automated.

The slap in the face and awakening to reality did not take long. I quickly realized as I began this project

just how time-consuming and difficult programming is and I would like to share some of the different

difficulties I encountered.

First, no matter how creative you may want to be, if the end user’s needs aren’t being met, your

programming is not effective. I realized early on that for certain things simplicity would prove to be

useful than complex solutions. For example, I wanted to create a combo list in the Ribbon that would

allow the user to scroll through and select from among all of the possible events and have it generate

the report upon selection. What I realized after discussing this option with my replacement accountant

was that she preferred simple pictures of the most common events, and she would be willing to use the

spreadsheet list and button for those not as common. This made it easier on me as I did not have to

spend time programming the combo list that would ultimately go unutilized.

Another lesson learned while doing this project was the importance of ample, clear documentation,

relevant to the end user. Again, if what I write and document doesn’t make sense to the person using

the spreadsheet application then my work is ineffective. I realized how important clear notes in my

programming would be for future users as well as message boxes and comment suggestions instructing

the user on how to work with the program. This brings me to the final lesson learned while doing this

project—learn to expect the unexpected.

As I created my separate buttons allowing the user to auto fill the spreadsheet, add a new event, and

edit existing events I had a hard time thinking of how an everyday user might potentially cause the code

to break. I had to think of the unordinary instances such as trying to edit and event that doesn’t exist, or

adding an event that already exists. I usually didn’t discover all of these loopholes all at once, nor do I

profess to have found all of them, but I found it a beneficial exercise to try and think of all of the

different ways the end user might encounter errors with my program.

One aspect of the project that I would have liked to have implemented was the ability for the user to

save the report as a PDF and automatically email the respective customer. Two things prevented me

from implementing this feature. First of all, from what I gleamed from online forums, Microsoft VBA

does not interact well with CutePDF writer. Because this is the application that I have at work for

creating PDF’s, I did not feel that it would be worth it to create a function that would not work at the

job. Secondly, I feared that the user might forget to verify to whom they were sending the reports and

so I thought that by requiring the manual step of having to copy the email address into their email client,

the user would at least have one more step of verifying that the recipient was appropriate.

Assistance

I did not receive any substantial assistance in the completion of this project. I will state however that I

would not have completed this project without the brilliant aid of online forums where other VBA

programmers post help and advice.

