
2.2 Executive summary of the project.

The business that my project is designed to facilitate is that of real estate investing.

This spreadsheet is designed to accomplish two business purposes:

1. Quickly produce a customizable “shell,” discounted-cash-flow-model (DCF Model),
tailored to an investment in real estate.

2. Gather and organize data relevant to the inputs of that model.

Real estate can be an excellent opportunity to store and grow your wealth. However, it becomes
a daunting task evaluating a real estate investment opportunity, to the extent that you become
comfortable with investing such a large amount of your personal net worth. This spreadsheet is
designed to assist in the investment decision analysis.

DCF Model

The DCF model is ubiquitous in the business world. It is a decision tool that allows finance
professionals to decide which ventures/projects to undertake. Real estate can be approached in
the same way. Deriving the free cash flows of a real estate investment can be difficult. Taxes,
assumptions, and imperfect market data, and other economic complexities lend to the difficulty
of creating a DCF model for a piece of real estate. This workbook generates a spreadsheet that
takes all of these complexities into consideration. With the click of a button a spreadsheet is
created, ready for the user to ingress his/her inputs. Then, the model does the rest of the
calculation, generating over 10 figures to evaluate the investment.

Market Data

This is not all that the spreadsheet does. A model only generates outputs as good as its inputs, or
in other words “garbage in, garbage out.” For this reason, I have built a significant amount of
tools that allow a real estate investor to analyze “the market,” enabling him/her to more
accurately determine the inputs to the model. These tools query online, up-to-date real estate
databases and extract information into organized tables. The user can input any city in Arizona
and their maximum price (either rental or purchase price) and the workbook will return
information matching those criteria for residential detached homes and townhouses. From that
point the user has an organized table of properties that can be analyzed. If more information is
needed regarding any single property the user has the capability to pull more information on that
specific property at the click of a button. The workbook also allows for quick web access to any
particular property, at the click of a button.

2.3 Implementation documentation.

This project evolved as I built it. I would finish one aspect of the workbook, discover something
else I would like it to do automatically, and then begin to build the procedures necessary to
create the desired feature. The stages of evolution and progression will be enumerated in the
following bulleted list:

• The first task I faced was building the DCF model. I built out the model by first
designing a spreadsheet manually, with all the formulas necessary to derive the free cash
flows of an investment property. I designated an area for inputs where the user must put
in his/her specific assumptions pertaining to the investment property. Then I designed an
area for output performance measures and the cash flows net present value and internal
rate of return. After manually building this spreadsheet I created a sub procedure that
would extract all of values from each cell of the model and print them out in the
immediate window. By altering my debug.print statement I was able to do this in such a
way that I was then able to copy the contents of the immediate window and copy it into a
sub procedure. Now that sub procedure, when executed, creates the DCF model that I
created manually, automatically. I programed this sub procedure to automatically size
and reformate the spreadsheet so that it is easy to navigate the inputs, the model, and the
outputs. Below is a screen shot of the model:
 ßThe inputs area

 The Model Area

ßThe investment measures area

This model is created whenever the user presses this, , button found on the “Real
Estate Analysis” tab in the ribbon.

 This button creates a new sheet for the model naming the sheet DCF1, or if it is the
second model to be created in the workbook it creates a sheet named DCF2 and puts the
new model there, and so on and so forth as many times as you push the button.

 When the new model appears all of the inputs will be blank and many of the formulas
will display “#DIV/0!” but this will change as soon as you enter numbers into the input
area.

 Another problem I came across while developing this project was that anytime I created a
new model and keyed in the inputs, most of the cells in the model area would display
“#######.” When the model is created, the sub procedure autofits all of the columns;
however, I found it irritating that the columns would not be the right size after placing

numbers into the input area. So for that reason I designed this button, , in the
ribbon that autofits all of the columns in the active spreadsheet.

 Every other part of this project revolves around the DCF model and its inputs. I
developed tools to assist the real estate investor in gathering information on what the
inputs to the model should be.

 As a side note, examples of inputs to the model are these:

§ Purchase Price of the property
§ Land Value (as opposed to the value of the improvements/building)
§ Improvement Value

o Investor’s Criteria and Contribution
§ Initial Equity Investment
§ Investor’s required rate of return

o Financing Information
§ Mortgage Amount
§ Financing Terms (years)
§ No. of payments per year
§ Annual mortgage interest rate
§ Private mortgage insurance (yearly)
§ Investment term (this is input through the ribbon)

o Tax Information
§ Depreciable life of the property for tax (usually 27.5 years)
§ Marginal Income tax rate
§ Capital gain tax rate
§ Recapture tax rate
§ Investor’s AGI
§ Investor’s participation, Active? (Y/N)

o Forecast Operating data
§ First year forecast PGI (potential gross income/rent revenue)
§ Annual growth in PGI
§ % Annual vacancy
§ % Operating expenses of EFI (Effective gross income)
§ Other income

o Future Sales Information
§ Forecast future sales price
§ Future selling expenses (as a percentage)

The main two inputs that the following tools give the investor information on are the
rental property purchase price and the effective gross income (yearly rent revenue).

• One of the inputs is “investment term,” indicating the length in years that the investor
desires to hold onto the rental property before selling it. This corresponds to the amount
of columns in “The model area,” each column numbered at the top represents one year of
cash flows. The inputs in the spreadsheet are keyed in after the user creates the initial
model and can be changed at any time. The problem with this is that if the user changes
the “Investment Term” input the model area did not correspondingly change the number
of columns it contained. So, to solve this problem, I put a note next to the “Investment

Term” input cell that prompts the user to use a specially created ribbon button, ,
to specify and change the desired investment term.

When the user presses this button in the ribbon, a user form pops up prompting them to
indicate the desired investment term. This is the user form that pops up:

When the user presses the OK button a sub procedure places that amount into the correct
investment term cell in the “Inputs Area” and then adjusts the model, either adding
columns for cash flows or deleting them, and adjusts formulas in the “Model Area” and
the “Investment Measures Area” so that the model still calculates correctly with the
added columns of cash flows. Below is a picture of the model extended to 9 years so that
the idea is clearly displayed. The cancel button just ends the sub procedure.

• Just to have an idea at this point, this is what the entire customized ribbon looks like:

• After developing everything previously mentioned, I developed several tools to help the
investor get a feel for the market and to gain insight into what the inputs of the DCF
model should be. These tools are represented in the “Web Data” and “Additional
Information on the Property” groups on the toolbar. I’ll discuss each of these tools.

• First, the Button labeled “Get Rental Data” with a “FOR RENT” icon launches a
userform shown below:

The caption of the form indicates that this will query “RENTAL DATA,” meaning this
will return a list of rental properties that meet the user criteria. The user enters in the
Arizona city for the market they wish to investigate. (If you want to try this then here are
some Arizona cities: Mesa, Tempe, Gilbert, Chandler, Queen Creek, Scottsdale, and of
course Phoenix) Then the user enters the maximum monthly rental rate for the rental
market they wish to investigate.

I included a text box at the bottom, which the user cannot edit, but if the user double
clicks on the text box the URL where the rental property data is being queried will be
copied to the clipboard. If the user so desires they can navigate to this website by pasting
the URL in a web browser.

For example, if the user entered “gilbert” into the city text box and “1000” into the max
monthly rate text box and pushed the ok button then a new sheet would be created and
named “Rent in Gilbert1.” If the user then performed a subsequent search in gilbert, a
new sheet would be created and named “Rent in Gilbert2,” and so on and so forth. The
table that would be generated looks like this:

The table lists the properties MLS ID, asking monthly rental price, City, State, Zip Code,
number of bedrooms, bathrooms, square feet, and three different ratios for comparison.
On the right a table listing exactly what the search was is generated and placed with a
thick boarder. For some reason some of the listings down tell square feet of the house so
those rental price per square foot ratios display as “#DIV/0!”

• The “Get House Price Data” next to the “Get Rental Data” does almost the
same exact thing; except for it produces a slightly different userform and returns a table
with purchase prices rather than rental prices. The form produced looks like this:

Instead of asking for the maximum rental price it asks for the maximum purchase price.
Also, the form caption says “PURCHASE DATA” so the user can be sure which of the
two buttons was pushed. When this query for “gilbert” homes listed at “100000” dollars
the table that it returns looks like this:

Notice that when the ok button is pushed on this form the procedure creates a new sheet
automatically and names it “Purchase in (city searched)#” and places that data in there.
The result is very similar to the rental data button but with slight differences. Using
either of these forms, if after the queries run and no results are found, then a message box
displays and notifies the user that no results were found. (NOTE: FOR QUERIES THAT
RETRIEVE A LOT OF DATA (300 OR SO ENTRIES) THE SPREADSHEET WILL
ACT LIKE ITS NOT RESPONDING. IT IS STILL WORKING. JUST WAIT AND IT
WILL BRING UP THE QUERIED DATA!)

• The next part I really enjoyed developing. The tools located on the ribbon in the group
“Additional Information On the Property”

Because the tables shown above, that result from the web queries, have relatively little
information more information can be retrieved with these buttons:

The first one is useful to obtain the full street address of the property. The website where
the information on the tables above came from does not list full street addresses. So, if
the user wants to know the full street address of the property they simply click on any cell
in the row of that property listing and then click the “Get The Full Street Address” button.
This button queries a different website using the listed MLS ID in the existing table. If a
new column has not already been created then the sub procedure inserts a column in
before column A and puts the full street address in that column in the row that
corresponds to the cell activated by the user. A heading is placed on this column that
says “Full Street Address.” The table then looks like this after clicking on that button:

This is all that that button does. The other two buttons build upon what this button has
done.

If the user clicks on the “Open Address in Web Browser” button then the procedure will
use the agent method and open up the property listing on yet another real estate website
in internet explorer. This way the user can quickly see a map and many pictures of this
property if so desired after analyzing the first table of information. When the user returns
to excel a message box is on screen prompting the user to click when finished browsing
the property on the web. Once the user clicks ok then Internet Explorer closes. This is
what the screen looks like after the user activates any cell in the desired row of the table
and clicks the “Open Address in Web Browser”:

The message box shown when the user returns to excel is as follows:

After clicking OK Internet Explorer Closes.

• Now, the final button is discussed, the “Full Property Details” button. After the
user inspects certain properties and their limited details, it is likely that the user will want
to get all the information possible on that property. Well as it turns out the website that
the previous button opens in IE is actually an excellent source of information. The “Full
Property Details” button creates a sheet in the workbook and names it after the street
address of the property. For example the previous property’s sheet created would be
named “37 W Park AvenueGilbert” and a whole lot of data about that property will be
populated to that new sheet. Here is what the table looks like if you click on the “Full
Property Details” button after activating a cell in the row of the corresponding
property listing:

This table contains approximately 65 distinguishing features pertaining to this property.
Both the “Open Address in Web Browser” and the “Full Property Details” buttons rely on
the full street address of the property being in column A. If the user does not acquire the
full street address by first pressing the “Get The Full Street Address” button that is OK.
Both the “Open Address in Web Browser” and “Full Property Details” buttons will both
first acquire and insert the full property street address and insert a new column if
necessary and then go on to perform their different functions. If a column has already
been inserted for the full street addresses, none of these buttons will insert another
column, they will simply put the full street address in the corresponding blank cell in
column A. That is the last button and tool that I created for this project pertaining to this
workbook.

• To wrap up this part of the paper, I designed the tools this way because they follow the
process in which I would want to go about looking for an investment property. I would
like to have some broad market data from which I can derive various statistics. Then I
would like to investigate the properties that (either rental listings or purchase listings)
stick out for any particular reason. I would want to be able to dig deeper and deeper on
individual properties rather than just importing a mountain of data from the beginning.
That is why I have designed this workbook in this manner.

2.4 Learning and Conceptual difficulties

I feel that each step of making this workbook was extremely difficult functionally. At first I
could not get the agent class to work no matter what I tried. Then after trying the web query
wizard I found that it was not responding as I had expected it to. The whole thing was looking
like it was going to be impossible to automate, especially the initial data queries of rental data
and purchase data. The concepts employed in this project were not difficult for me to grasp, but
getting the concepts to work was extremely difficult and time consuming.

Each process no matter how simple had many complicating attributes. One thing that I found
especially difficult was creating a new sheet with a unique name. This one task though simple to
manually do was very difficult to automate. In the end, I constructed a complicated code using
do loops, for loops, if statements, and message display setting statements to complete this task.
The code I wrote do this task is shown below:

For Each er In Worksheets
 If er.Name = Replace(Left(address, InStr(1, address, ",", vbTextCompare)), ",", "") Then
 quit = True
 MsgBox ("This property already has a sheet generated!")
 Exit Sub
 End If
Next

For Each sheet In Worksheets
 If sheet.Name = "data" Then
 sheetexist = True
 Exit For
 End If
Next

If sheetexist = False Then
 Worksheets.Add
 ActiveSheet.Name = "data"
 setupWebquery2 (url)
End If

Another problem I had early on was that querying, parsing, and organizing data for rental
properties and purchase properties required two unique processes, instead of one in the same. I
copied lots of the code from the rental query, which I wrote first, and pasted it into a separate

module to use if for the purchase data query. This created all kinds of problems because all of
the variables in the two separate procedures had the exact same names. This didn’t create
problems for the computer because all variables were local sub procedure variables, but this
created a huge problem for human errors. I was making them left and right.

To cover each and every difficulty I faced I would have to recreate the project and make note of
each one. I’m sure that if I were to write each difficulty down this section of the paper would
dwarf the initial section of the paper.

One concept that I really learned from this project was the usefulness of user defined functions,
and passing variables to sub procedures; e.g., sub getData (url as string). This became very
useful. I mastered these practices somewhere half way through the project. Had I had a firm
understanding of these concepts at the beginning I could have written a whole lot less code than I
did.

Finally, I learned how complicated it is to produce a robust automated procedure. There are so
many different ways to approach a sub procedure, or call a line of code with a button. Figuring
out a way to handle ALL approaches and then still perform the procedure is very difficult and
VERY time consuming. In the end I thoroughly enjoyed creating this project. I feel that I have
learned immense amounts about VBA and feel that I am a much better VBA programmer having
completed this project.

2.5 Assistance:

I did not receive any substantial assistance from anyone, or any assistance at all for that matter. I
“googled” a lot, when I needed to know how a certain object behaved, or how to perform a
specific task in VBA.

