
Solar Field Performance Simulator and Optimizer 

Preface:  my original proposal was to build a data scraper for the European Union patent 

website, but upon examining robots.txt, I found that this activity was prohibited.  So I decided to 

change my project to this simulation and optimization tool – and I made sure that the scope and 

difficulty were substantially increased over my original proposal to demonstrate that I wasn’t 

simply copping out. 

The Problem:  solar power generation can be a very capital expensive process.  Most of this 

capital is deployed in building the solar field which contains hundreds or even thousands of 

individual heliostats (a heliostat is a mirror or other glass pane attached to a motor and gear that 

enable it to track the movement of the sun).  In a Power-Tower solar configuration, all these 

individual heliostats track the movement of the sun and position themselves to reflect the sun’s 

rays to a central tower where the heat is gathered and used to generate usable energy (watch the 

movie Sahara to see an example of what this looks like).  Obviously, the plant owner wants to 

know how much energy can be expected from a given solar field.  Furthermore, the plant owner 

also wants to know what the optimum configuration of a solar field should be in order to 

maximize energy collected for capital deployed on heliostats.  The trick is that the wave-particles 

in each sun ray (called photons) do not always behave as expected.  They can bounce in funny 

angles.  They can be blocked by clouds.  They can be attenuated by dust.  They can do all sorts 

of unpredictable things on their way from the sun to heliostats to the power tower.  Given that 

building a solar field is a very expensive proposition that requires a plant builder to be born full 

grown (as in, it won’t work unless the entire field is built all at once), the problem is to 

accurately predict the performance of a theoretical solar field, and then to optimize that field to 

get maximum performance for a given number of heliostats – and dollars. 

The Solution: basically, my project builds various theoretical solar field configurations based on 

the building sites and heliostat materials available, and then it runs Monte Carlo simulations on 

those sites on sun positions throughout the year based on the user’s inputs for the latitude of the 

building site.  Before I get into the details of how this works, below are the instructions to walk 

through using this tool (it’s really very simple to use) to get an idea of the general function.  

After going through these quick steps to get familiar with the program, I’ll go through them 

again with detailed explanations on how I did what I did, why I did it, where the limitations are, 

and what could be done to extend the scope of the project.  Here are the simple instructions (if 

you want to go through it really fast, I promise it’s very easy to use): 

1. Open the solar_simulator_FINAL.xlsm file and click on the Solar Simulator tab in 

the Ribbon, and the Current Optimum worksheet.  The top of your screen should 

look like this: 



 

2. Click on the Create Field button (with the picture of the yellow sun above it).  This 

will take you to the Output worksheet, and will show you the solar field that the 

code has just generated (more details on this later). 

 

3. Now click on the Monte Carlo button so that the user form opens.  The middle of 

your screen should now look something like this: 

 

 

4. Set the iterations to something low (like 1 or 2) so that this doesn’t take a long time, 

and click Simulate. 

 

5. This will run the simulation and take you back to the Current Optimum page when 

you are finished.  It will show the expected level of performance (in insolation, or the 

measure of energy from the sun) for the field configuration you simulated.  The 

screen will look something like this: 



 

6. The foregoing steps will run Monte Carlo simulations of various iterations based on 

the one solar field configuration and are useful to help calculate total energy coming 

from the field.  However, in order to optimize the field configuration itself, click the 

Optimize button in the Monte Carlo user form (again, keep the Iterations low to see 

how it works quickly). 

 

7. Notice that the Output worksheet will update and try a new configuration for each 

Monte Carlo simulation.  When the program finds a new maximum output for a 

given field configuration, it will record the total output on the Current Optimum 

worksheet and display the current best known field layout below.  This optimization 

will keep running until you click the STOP! button, which is enabled while an 

optimization is running. 

 

What I did:  now for the details of how this all works.  With the exception of building the 

Ribbon tab and buttons (for which I used the RibbonWizard), I wrote this code and designed 

these calculations myself.  What this really means for practical purposes is that I could spend 

ages telling you all about it, but I’ll try to be brief and cover the main points concisely. 

Step 1. 

From step 1 above, the Current Optimum worksheet has column headers of Sites, longitude, 

elevation, latitude, Heliostats, width, elevation, and height.  Line represents a site and 



heliostat pair (as in one particular heliostat paired up with one particular location where that 

heliostat can be placed in the solar field building site). 

Click on the Sites tab and you will see a list of all the possible sites a heliostat could be installed 

in a given user field (in this case, I included 488 potential sites).  The three numbers represent 

longitude (an east to west measurement), elevation (the height of the ground from the lowest 

elevation on the building site), and latitude (a north to south measurement).  All these numbers 

are in meters and Cartesian coordinates.  So in summary, for an origin on the Southern edge of 

the solar field, centered between the Eastern and Western edges, and at the lowest point of 

elevation for the entire site, these coordinates give the location of every possible building site. 

Similarly, the Heliostats tab gives a name and description of each available heliostat.  A user 

could have many duplicates of the same heliostat, or there could be one of each type, or there 

could be a list of thousands of identical heliostats.  The point of this program is to take whatever 

possibilities the plant owner has to work with and look at possible combinations of all of them 

until a reasonable optimum is identified.  The numbers in the Heliostat tab represent the width of 

the heliostat, its elevation on the post which holds its motor and gear, and its height (all numbers 

in centimeters).  There are 66 different heliostats for this sample data. 

A simulation can have any number of sites and any number of heliostats – the real world doesn’t 

match things up for us naturally, and this code will accommodate that fact. 

Step 2. 

In step 2, the code automatically generates a possible solar field configuration.  If you run this, 

you see that for the sample data given, it takes a few seconds to generate this field.  Consider for 

a minute what this means.  This code is taking 488 possible sites and 66 possible heliostats and 

pairing them up in such a way that the configuration is random and yet no site or heliostat is used 

more than once.  Furthermore, if there were 488 heliostats and 66 sites, the code would 

automatically switch the limiting factor in the configuration and run the same random 

assignment in the same time.  If you’d like, go ahead and copy thousands of lines into one or 

both sheets and run it again – you’ll see the speed at which the algorithm runs (even in VBA). 

This is an absolutely critical step in solving this problem because it could easily require 

thousands or even 10s of thousands of possible configurations to identify a stable optimum.  

Field configurations taking more than a second or two are simply not feasible components of an 

effective solution.  The trick behind this algorithm is the realization that when a calculation 

selects a random number, what it is really doing is selecting up to two resultant ranges of random 

numbers yet to be polled.  For example, if you pick a random number from 1 to 10, you might 

pick 7.  But what you have really done is identified the yet un-polled ranges of 1 to 6 and 8 to 10.  

If you keep track of those ranges, then next time your algorithm runs, you can limit your search 

to the ranges you have not yet examined and thus speed things up dramatically (the more 

elements you are choosing from, the faster this algorithm becomes in comparison to polling the 

entire range every single time). 



Not only that, but the random selection is interchangeable.  In this particular piece of code, I’m 

using the RandBetween function, but if I were using a particular distribution or following an 

optimization space routine such as generalized reduced gradient, I could simply swap out the 

appropriate selection lines and record the new resulting ranges and the algorithm still runs.  If 

you’d like to work through the code to see how it is done, here is a screenshot (it is heavily 

commented to make it easier to read): 

 

 

This was a tremendous learning experience through some really interesting mathematically and 

coding concepts.  I began thinking about it with the Boggle project where it occurred to me that 

it is theoretically possible to randomly poll the 25 possible slots and never find the an unused 

one.  Although the odds of this happening are infinitesimally small with only 25 possibilities, 

what if you had 10 million possibilities?  What if you had to pick a number between one and 10 

million, and the only unused number still remaining was 964?  Would you keep guessing over 

and over again only to have the code tell you “Nope, that’s not it” seemingly forever until out of 

all 10 million numbers you happened to pick 964?  It just seemed a little bit inefficient to me for 

a dataset of any given size, so I wrote the math out on an old notebook page until I could figure 

out how to retain the random property of selection without ever having to poll the same range 

twice.  Then, for this project, I had to identify which set of inputs was the limiting factor – as in, 

are there more sites than heliostats or more heliostats than sites – and make the conditionals 

smart enough to switch between the two while still recursing through the same code.  This 

solution works for one pair – that is, it matches up one input with another – but the algorithm 

could work in any number of dimensions (you would simply increase the number of dimensions 

on the arrays and add a nested loop for each one, but identifying the un-polled ranges and 

continuing the random selection would work the same way it is coded now). 



Steps 3 and 4. 

The process in step three is fairly simple, but it was extremely tedious to code.  This is the actual 

Monte Carlo simulation, and it uses only a flat distribution (or “Pillbox” as you see in the user 

form).  However, this step is where the actual solar power calculation is performed.  What 

happens is that a square centimeter coordinate on each heliostat is chosen randomly as the place 

where a theoretical photon will hit.  This coordinate is then used in the angular calculation to find 

the incident angle between the sun, the heliostat and the tower (the tower’s coordinates are input 

by the user on the Target worksheet).  The smaller this angle, the more power will get to the 

tower because a wide angle means greater dispersion across the total wave.  (Imagine shining a 

flashlight directly at the wall and seeing a relatively small, concentrated and bright spot.  Now 

angle the flashlight and watch the spot turn oblong and dim as the various photons find their path 

to the target at a wider angle.  This is the same thing that happens to sunlight reflecting up to the 

tower – a wide angle means less total energy hitting the small target required to garner the solar 

energy.)  Here is the calculation for the incident angle of photon impact: 

 

 

The positions of the sun are also represented in Cartesian coordinates (these are not the literal 

position of the sun 93 million miles away – only unit vector representations required to calculate 

the approximate angle of an incoming photon), and they are recorded on the Sun worksheet.  

This model allows the user to input any number of sun positions.  If you check the worksheet, 

you will see that this sample data includes coordinates for the sun on solstices and equinoxes for 

each usable solar hour during those days, however, a faster approximation could be made by 

simply using less solar positions. 

Likewise, after rough optimizations have been made, a detailed analysis could be done by using 

solar positions of each hour of each day throughout the year based on location.  In fact, 

insolation data could be fed into those positions (including modeling the effects of cloud cover, 

physically blocking and shading of photons by the tower itself or other heliostats, etc.) by simply 



multiplying the resultant angle against a base insolation level adjusted by each solar position, and 

the code would still run.  This really is a pretty robust little model, at least in some ways (if I 

may say so, that is). 

This step could be made much faster by hiding the Output tab and turning off screen updating (in 

fact, it could use an array for all the calculations instead of writing to the tab at all), but I wanted 

to include a visual representation of what the code was doing so it would be easier to follow.  

Still, given that the vector calculations and Monte Carlo simulation can take some time, it’s best 

to use a low number of iterations when running this section of the code unless you really plan on 

building an actual solar field. 

Steps 5 through 7. 

The foregoing steps are the guts of the project.  They are designed to run separately so that 

modules of the code can be used on various datasets.  Monte Carlo simulations cannot be 

interrupted, but any number of external calculations, constraints or configurations can go into the 

solar field configuration between runs.  The Optimize button simply loops these two steps 

together, but it uses the DoEvents function before and after starting each configuration and 

simulation so that the user can stop the code once a reasonable optimum is met (or the user is 

tired and wants to play computer games instead). 

If you click Optimize (again, use a low number of iterations, say, 1…) and let it ride, you’ll see 

that the Current Optimum sheet updates periodically.  As the code continues to run, the current 

optimum configuration will update less and less frequently.  This is because it is becoming 

harder and harder to beat the current best-known configuration.  Be that as it may, the code will 

continue running over and over again and do its best to find a new optimum as long as the user 

lets it run. 

Closing Thoughts: before I go, I just wanted to point out that this code is not merely for solar 

optimizations.  It is written to be modular and portable, and to consider any number of inputs or 

conditions.  By swapping out the angular calculation module, any number of conditions could be 

analyzed.  What if you have a housing development with a finite number of lots and only so 

many types of homes to build?  What is the best way to match them up?  How about testing 

virality on a website where a certain number of users will post without knowing that the others 

have posted, and then that same set of users will react to what the others posted?  It’s not a 

random number each time, it’s the same number reacting to each other randomly.  Or what about 

a big business initiative or military effort where you have a finite number of team positions to fill 

and a unique set of discrete individuals to fill them?  What’s the best way to do that?  In each of 

these examples, the user only needs to swap out the calculation module and populate the input 

worksheets with the appropriate conditions and inputs – the logic and the speed advantages of 

the algorithm will still work.  That’s my project.  Thanks for a great class. 


