
David Katherman

ISYS 540 – VBA

Page | 1

Dynamic Database

ISYS 540 Final Project

Executive Summary

This project was originally conceived as a ‘pocket database’ application for a mobile platform, allowing a

user to dynamically build, update, and search small databases on the go at worksites or business

meetings. The version of the project explained below is a prototype of the pocket database system,

built in Microsoft Excel using visual basic for applications and called ‘Dynamic Database’.

The Dynamic Database program allows a user to create a database composed of values held in a specific

worksheet in the workbook. The user may specify what fields he wishes the database to take in.

Dynamic Database will take the specified information and dynamically create an input form by which the

user may quickly add information to the sheet containing the database.

Dynamic Database also allows the user to edit an existing database. The user may select the existing

database from a list, and the program dynamically recreates the input form for that database from the

saved input form information, kept on a separate sheet and inaccessible to the user. The user may then

use the input form to quickly add more data to the database.

While a user could manually create the sheets and column headers and manually search and edit the

information contained thereon, Dynamic Database was conceived to help me work through the logic of

dynamically creating userforms and form controls from a series of user inputs, and then successfully

placing the information entered into those form controls into a file. Documentation and forums suggest

it is not possible in vba, where it is discussed at all, but I have found that it is possible, although it is not a

small undertaking. Dynamic Database is described in detail below.

David Katherman

ISYS 540 – VBA

Page | 2

Implementation Documentation

The Excel file containing Dynamic Database has two worksheets by default. When Dynamic Database is

opened a subroutine is automatically triggered which selects the first of these two worksheets, called

‘Datbase Start’ which is shown in Figure 1.

Database Start contains the basic instructions for utilizing the database, as well as two buttons which

launch the program. The button labeled ‘Start New Database’ links to a subroutine which simply

initializes a vba userform called ‘newDBForm.’ NewDBForm contains more instructions on the use of

the form and input controls which allow the user to specify the type of field he wants the database table

to accept and name it. A button below these inputs will add the specified type of field and name to a

listbox control as a string of the form ‘type, name.’ As soon as the string is added to the listbox control

the inputs that were used to construct it are cleared to accept new data. NewDBForm is shown in figure

2 below.

Figure 1

David Katherman

ISYS 540 – VBA

Page | 3

The form controls are coded so that none of

the above functions of the form will execute if

a needed input is missing or blank. In such a

case a message box will appear and inform

the user of their error and exit the click action

subroutine.

Finally, this form allows the user to input the

name of the database. Once all of the fields

which will accept data in the database table

are added to the listbox control and the

database is named, the user can click the

‘Create Input Form’ button.

Once the create input form button is clicked,

the items in the listbox control are added to an array that is dynamically sized to fit exactly the number

of fields that the user specified. This is done using the redim statement. Inside a loop, each string is

then parsed into separate variables holding the type and name of the controls the user wants to create.

If statements then query the variable holding the type string and a variable that was created as a control

is set to be a form control of the given type, and is attached to a userform called ‘inputForm’ which is

the blank slate to which the program adds each input control to create the input form dynamically.

InputForm is created with a single button by default. In the same loop a label control is created and

attached to the userform using a different control variable. This is to identify the input control the

program just created on the form and the caption is set to the name string. Each label is added to a

separate array for later use.

Figure 2

David Katherman

ISYS 540 – VBA

Page | 4

The variable that was created as a control, which is used to hold the control while it is attached to the

form is then re-used each time the loop repeats as a new ‘type, name’ pair is pulled from the array and

parsed into separate strings to determine the type of input control to create. A part of the process is

shown in the code snippet below:

For i = 0 To UBound(fields) - 1

 fieldType = Mid(fields(i), 1, InStr(1, fields(i), ",") - 1)

 fieldName = Mid(fields(i), InStr(1, fields(i), ",") + 2)

 If fieldType = "Text" Or _

 fieldType = "Numerical" Or _

 fieldType = "Date" Then

 Set label = inputForm.controls.Add("forms.Label.1")

 With label

 .Caption = fieldName

 .Left = 24

 .Top = (12 + (30 * i))

 End With

 labels(i) = label

 Set textbox = inputForm.controls.Add("forms.TextBox.1", fieldName)

 With textbox

 .Left = 120

 .Top = (12 + (30 * i))

 End With

Note that the form creation code (Set textbox = inputForm.controls.Add("forms.TextBox.1", fieldName))

includes the name of the field, this is so the control can be accessed for its value later, when the data

needs to be written to the database table. Note also that the complete source code can be found in

Appendix 1. Finally, the database name taken from the newDBForm is written to a global variable for

storage and later use. The relationship between the newDBForm with the list of user specified fields,

and the actual input form that is created from that information is shown in Figure 3.

David Katherman

ISYS 540 – VBA

Page | 5

Figure 3

Once the inputForm is completely created, the newDBform is unloaded. In order to save the form for

later use, the string values of the ‘type, name’ pairs (which were written to an array when the program

started to create the inputForm) are written to the second of the two default worksheets in Dynamic

Database, called ‘inputForms.’ Maintenance of the saved information in this sheet is discussed later.

The user can now use the fields in the dynamically created input form to accept inputs. Once the ‘Add

to DB’ button is pressed, the values in the input controls in inputForm are written to the database

David Katherman

ISYS 540 – VBA

Page | 6

worksheet. The subroutine first checks that the name of the database in the global variable exists as the

name of a worksheet in the sheets collection. If not, a worksheet with the name of the database is

created and the column headers are added by looping through the labels array to get the name of each

input. Once the column headers are added to the sheet, the values from the input controls are added to

the sheet under their respective column headers. This is accomplished through code like that in the

snippet below:

Sheets.Add.Name = dataBaseName

 ' enter data into the form

 Sheets(dataBaseName).Select

 Range("A1").Select

 ' add the column headers to the DB sheet

 For i = 0 To UBound(labels) - 1

 Selection.Value = labels(i)

 Selection.Font.Bold = True

 Selection.Offset(0, 1).Select

 Next

 Range("A1").Select

 ' find a blank row

 Do While Selection.Value > ""

 Selection.Offset(1, 0).Select

 Loop

 ' add the data from the input form to the blank row

 For i = 0 To UBound(labels) - 1

 Selection.Value = inputForm.controls.Item(labels(i))

 Selection.EntireColumn.AutoFit

 Selection.Offset(0, 1).Select

 Next

 End If

If the sheet that holds the database table already exists (as in the second time data is added to the sheet

or if the database is edited later) then the proper sheet is simply selected and the data is added to the

David Katherman

ISYS 540 – VBA

Page | 7

first blank row that is found. The user can then use the input form to add as much data as needed

before exiting the form and saving the workbook.

In order to edit the database the user created, the second button on the previously mentioned

‘Database Start’ sheet is labeled ‘Edit Existing Database.’ This button is linked to a simple macro that

initializes a third userform called ‘editForm.’ This form is shown in Figure 4.

EditForm contains instructions on how to edit

an existing database and a combobox that is

populated with the names of all of the sheets

holding database information. The user may

select the database from this combobox and

click the ‘Edit DB’ button, which calls a subroutine that finds the name of the database and the field

information in the inputForms sheet where the information needed to recreate the input form is stored.

This subroutine then initializes the newDBform and loads each of the saved ‘type, name’ pairs into the

listbox control. The user can then click the ‘Create Input Form’ button to recreate the proper input

form. Because the database in question already exists, any data entered into the form is simply inserted

in the proper order into the first blank row in the database sheet.

Because the application was designed to be a prototype of the database only and was intended to

provide learning on the creation of dynamically created user forms, this is the limit of its functionality.

Figure 4

David Katherman

ISYS 540 – VBA

Page | 8

Learning Concepts, Difficulties, and Assistance

I genuinely struggled with several aspects of this project. The first and foremost was the creation of

dynamic forms. I spent two days researching on multiple forums using many different search strings but

was unable to find any forum in which the experts said it was possible (or recommended) to create

dynamic form controls.

What little I did manage to find suggested, at least to my mind, that I would need a separate variable to

hold each form control. Operating under this erroneous assumption I began to research how to create

variables dynamically. There was even less information about this. What I thought I needed was to

write code that could write code; something that could dim a set of new variables on the fly as needed.

I discovered that facilities existed in other programming language to do things like this. For example

Java has the eval statement, which would look something like:

 int i = 0

 String variableName = “VariableName”

 For(i = 0; i<array.len; i++){

 Eval(variableName + int.toString())

 }

Unfortunately, I couldn’t find any such facility in vba. As a matter of fact, most of what I was finding in

the forums directed me to use an array, but that array still needed to be filled with something. I

eventually worked out the idea that I could place a dim statement within a loop to create the variable

type I would need to create the form control. I discovered that this would be the equivalent of trying to

dim the same variable twice in the same program and would crash it. I could have created the variable

in the beginning of the subroutine, but I was convinced that without the capacity to create multiple

variables, I would have to re-use that single control variable. I was further convinced that re-using that

David Katherman

ISYS 540 – VBA

Page | 9

variable would overwrite the same spot in memory, leaving me with a single control instead of the

multiple controls I would need.

By then I had the code I needed to programmatically create the proper controls, and I knew the logic

that I needed. I just didn’t think I could create all of them with a single variable. I expressed my

problem to William Day, who graduated MISM from BYU in 2008 and is a very good friend and confidant

of mine. I expressed my ideas and my concerns about the single control variable problem, and he

taught me a lesson.

He wrote a simple program that took in a number, and dynamically created a number of fields equal to

that number on a new form. He did it using a single control variable to create the control, which was re-

used each time the loop reset, and it worked. I had so convinced myself of what I thought the code

would do that I didn’t bother to code a quick test to be sure. If I had I could have saved myself a whole

day, and several good natured jibes from Will.

Will sent me his program and it matched almost exactly the logic I had previously worked out, only with

the single, re-useable control variable. I coded my own program with a single variable (like I had

neglected to test) and it worked like a charm. I did not receive any other substantial assistance in this

project.

The second thing that I struggled with was finding a way to access each of the controls I created so that I

could get the value of that item. My original thought was to put them all into a global array at creation,

which I would then be able to loop through to get each control back out. This didn’t work for two

reasons. First and foremost, if I had two different kinds of controls I would end up with a type mismatch

when attempting to add one or the other to the array. For example, if I had both text boxes and

boolean checkboxes, then I could not add both to the array. Second, that global array would be

destroyed when the program ended, meaning I could not access the form controls coming back to the

David Katherman

ISYS 540 – VBA

Page | 10

program after it had ended, or if I were working with more than one database. I worked on it for hours,

but clearly this wasn’t the answer.

As I dug back into the methods that create the form controls I realized that I could name the control at

creation, and then access it at any time during execution by name. This allowed me to get the data from

the input forms and write it to the proper spreadsheet.

The major lesson in all of this was that there is no harm in coding a short program to be sure a program

will do exactly what you think it will do. Chances are you’ll be surprised when it doesn’t. If I had just

tried what I thought wouldn’t work to be sure I could have saved myself a great deal of time, and in the

future I will definitely do more coding and less thinking about what might go wrong. I’ll get more

accurate results from coding the idea than what I think it might do.

David Katherman

ISYS 540 – VBA

Page | 11

Appendix 1

Source Code

Database Start Module

Sub startNewDatabase_Click()

 newDBForm.Show

End Sub

Sub editExistingDatabase_Click()

 editForm.Show

End Sub

newDBForm

Private Sub addFieldButton_Click()

 Dim fieldType As String

 Dim fieldName As String

 fieldType = fieldTypeCombobox.Value

 fieldName = fieldNameTextbox.Value

 If fieldType > "" And fieldName > "" Then

 fieldsList.AddItem (fieldType & ", " & fieldName)

 fieldTypeCombobox.Value = ""

 fieldNameTextbox.Value = ""

 Else

 MsgBox ("You tried to add a blank field... You can't do that. You know that don't you? Try again.")

 End If

End Sub

Private Sub createInputFormButton_Click()

 inputForm.Show

End Sub

Private Sub deleteFieldButton_Click()

David Katherman

ISYS 540 – VBA

Page | 12

 If fieldsList.ListIndex = -1 Then

 MsgBox ("You have to select a field in order to remove it. You're seriously not very good at this are

you?")

 End If

 On Error Resume Next

 fieldsList.RemoveItem (fieldsList.ListIndex)

End Sub

Private Sub UserForm_Initialize()

 With fieldTypeCombobox

 .AddItem ("Text")

 .AddItem ("Binary")

 .AddItem ("Numerical")

 .AddItem ("Date")

 End With

 fieldTypeCombobox.Value = ""

End Sub

inputForm

 Dim labels() As Variant

 Dim inputs() As Variant

 Dim dataBaseName As String

Private Sub addToDB_Click()

 Dim i As Integer

 Dim sheetExists As Boolean

 Dim ctl As Control

 Dim fields() As Variant

 ' redim the size of the fields array to hold the number

 ' of fields the user created

 ReDim fields(0 To newDBForm.fieldsList.ListCount)

 ' fill the fields array with the fields user created

 For i = 0 To newDBForm.fieldsList.ListCount - 1

 fields(i) = newDBForm.fieldsList.List(i)

 Next

 ' check the sheets to see if the database the user named

 ' already exists

 For i = 1 To Sheets.Count

 If Sheets(i).Name = dataBaseName Then

 sheetExists = True

David Katherman

ISYS 540 – VBA

Page | 13

 End If

 Next

 ' add the data to the specified sheet because it exists already

 If sheetExists Then

 Sheets(dataBaseName).Select

 Range("A1").Select

 Do While Selection.Value > ""

 Selection.Offset(1, 0).Select

 Loop

 For i = 0 To UBound(inputs) - 1

 Selection.Value = inputForm.controls.Item(labels(i))

 Selection.EntireColumn.AutoFit

 Selection.Offset(0, 1).Select

 Next

 ' if sheet doesn't exist, we'll need to create it, then

 ' add the column headers, and the corresponding data below them

 Else

 Sheets.Add.Name = dataBaseName

 ' enter data into the form

 Sheets(dataBaseName).Select

 Range("A1").Select

 ' add the column headers to the DB sheet

 For i = 0 To UBound(labels) - 1

 Selection.Value = labels(i)

 Selection.Font.Bold = True

 Selection.Offset(0, 1).Select

 Next

 Range("A1").Select

 ' find a blank row

 Do While Selection.Value > ""

 Selection.Offset(1, 0).Select

 Loop

 ' add the data from the input form to the blank row

 For i = 0 To UBound(labels) - 1

 Selection.Value = inputForm.controls.Item(labels(i))

 Selection.EntireColumn.AutoFit

 Selection.Offset(0, 1).Select

 Next

David Katherman

ISYS 540 – VBA

Page | 14

 End If

 ' clear out the inputs on the form so they are ready for

 ' more input

 For Each ctl In inputForm.controls

 Select Case TypeName(ctl)

 Case "TextBox"

 ctl.Text = ""

 Case "CheckBox"

 ctl.Value = False

 Case "ComboBox"

 ctl.Value = ""

 Case "ListBox"

 ctl.Value = ""

 Case "OptionButton"

 ctl.Value = False

 Case "ToggleButton"

 ctl.Value = False

 End Select

 Next ctl

End Sub

Private Sub UserForm_Initialize()

 Dim fields() As Variant

 Dim i As Integer

 Dim j As Integer

 Dim temp As String

 Dim label As MSForms.label

 Dim textbox As MSForms.textbox

 Dim checkbox As MSForms.checkbox

 Dim fieldType As String

 Dim fieldName As String

 Dim exists As Boolean

 Dim sht As Worksheet

 ReDim fields(0 To newDBForm.fieldsList.ListCount)

 ReDim labels(0 To UBound(fields))

 ReDim inputs(0 To UBound(fields))

 dataBaseName = newDBForm.DBName.Value

 For i = 0 To newDBForm.fieldsList.ListCount - 1

 fields(i) = newDBForm.fieldsList.List(i)

 Next

David Katherman

ISYS 540 – VBA

Page | 15

 For i = 0 To UBound(fields) - 1

 fieldType = Mid(fields(i), 1, InStr(1, fields(i), ",") - 1)

 fieldName = Mid(fields(i), InStr(1, fields(i), ",") + 2)

 If fieldType = "Text" Or _

 fieldType = "Numerical" Or _

 fieldType = "Date" Then

 Set label = inputForm.controls.Add("forms.Label.1")

 With label

 .Caption = fieldName

 .Left = 24

 .Top = (12 + (30 * i))

 End With

 labels(i) = label

 Set textbox = inputForm.controls.Add("forms.TextBox.1", fieldName)

 With textbox

 .Left = 120

 .Top = (12 + (30 * i))

 End With

 ElseIf fieldType = "Binary" Then

 Set label = inputForm.controls.Add("forms.Label.1")

 With label

 .Caption = fieldName

 .Left = 24

 .Top = (12 + (30 * i))

 End With

 labels(i) = label

 Set checkbox = inputForm.controls.Add("forms.CheckBox.1", fieldName)

 With checkbox

 .Left = 120

 .Top = (12 + (30 * i))

 End With

 End If

 Next

 ' we need to save the form

 ' - take the fields array and write its contents to

 ' a blank row in the hidden inputForms sheet

 Sheets("inputForms").Select

 Range("A1").Select

David Katherman

ISYS 540 – VBA

Page | 16

 exists = False

 Do While Selection.Value > ""

 For Each sht In Sheets

 If dataBaseName = Selection.Value Then exists = True

 Next

 If exists = True Then

 Exit Do

 End If

 Selection.Offset(1, 0).Select

 Loop

 If exists = False Then

 'find an empty row

 Do While Selection.Value > ""

 Selection.Offset(1, 0).Select

 Loop

 Selection.Value = dataBaseName

 Selection.Offset(0, 1).Select

 For i = 0 To UBound(fields) - 1

 Selection.Value = fields(i)

 Selection.Offset(0, 1).Select

 Next

 End If

 Unload newDBForm

End Sub

EditForm

Dim labels() As Variant

Private Sub editDBButton_Click()

 Dim fields() As Variant

 Dim i As Integer

 Dim j As Integer

 Dim fieldSize As Integer

 Dim temp As String

 Dim label As MSForms.label

 Dim textbox As MSForms.textbox

David Katherman

ISYS 540 – VBA

Page | 17

 Dim checkbox As MSForms.checkbox

 Dim fieldType As String

 Dim fieldName As String

 'find the number of fields so we can resize the array

 Application.ScreenUpdating = False

 temp = editForm.dbListCombo.Value

 Sheets("inputForms").Select

 Range("A1").Select

 Do While Selection.Value > ""

 If Selection.Value = temp Then

 Selection.Offset(0, 1).Select

 Exit Do

 End If

 Loop

 Do While Selection.Value > ""

 If Selection.Value > "" Then

 fieldSize = fieldSize + 1

 Selection.Offset(0, 1).Select

 End If

 Loop

 ReDim fields(0 To fieldSize)

 ReDim labels(0 To UBound(fields))

 dataBaseName = editForm.dbListCombo.Value

 ' load the fields array with the saved data in inputforms

 Range("A1").Select

 Do While Selection.Value > ""

 If Selection.Value = temp Then

 Selection.Offset(0, 1).Select

 Exit Do

 End If

 Loop

 For i = 0 To fieldSize - 1

 If Selection.Value > "" Then

 fields(i) = Selection.Value

 Selection.Offset(0, 1).Select

 End If

 Next

David Katherman

ISYS 540 – VBA

Page | 18

 For i = 0 To fieldSize - 1

 newDBForm.fieldsList.AddItem (fields(i))

 Next

 newDBForm.DBName.Value = dataBaseName

 Application.ScreenUpdating = True

 Unload editForm

 Sheets(dataBaseName).Select

 newDBForm.Show

 ' inputForm.Show

 ' newDBForm.Hide

 ' Build the form

 'For i = 0 To UBound(fields) - 1

 'fieldType = Mid(fields(i), 1, InStr(1, fields(i), ",") - 1)

 'fieldName = Mid(fields(i), InStr(1, fields(i), ",") + 2)

 'If fieldType = "Text" Or _

 'fieldType = "Numerical" Or _

 'fieldType = "date" Then

 'Set label = inputForm.controls.Add("forms.Label.1")

 'With label

 '.Caption = fieldName

 '.Left = 24

 '.Top = (12 + (30 * i))

 'End With

 'labels(i) = label

 'Set textbox = inputForm.controls.Add("forms.TextBox.1", fieldName)

 'With textbox

 '.Left = 120

 '.Top = (12 + (30 * i))

 'End With

 'ElseIf fieldType = "Binary" Then

 'Set label = inputForm.controls.Add("forms.Label.1")

 'With label

 '.Caption = fieldName

 '.Left = 24

 '.Top = (12 + (30 * i))

 ''End With

David Katherman

ISYS 540 – VBA

Page | 19

 'labels(i) = label

 'Set checkbox = inputForm.controls.Add("forms.CheckBox.1", fieldName)

 'With checkbox

 '.Left = 120

 '.Top = (12 + (30 * i))

 'End With

 'End If

 'Next

 ' inputForm.Visible = True

End Sub

Private Sub UserForm_Initialize()

 Dim sht As Worksheet

 Dim inSheets As Boolean

 ' add all the databases in existence to the combobox for selection

 For Each sht In Sheets

 If sht.Name <> "Database Start" And sht.Name <> "inputForms" Then

 dbListCombo.AddItem (sht.Name)

 End If

 Next

 Application.ScreenUpdating = False

 Sheets("inputForms").Select

 Range("A1").Select

 ' find form info that doesn't have a database and delete it

 Do While Selection.Value > ""

 inSheets = False

 For Each sht In Sheets

 If sht.Name = Selection.Value Then inSheets = True

 Next

 If inSheets = False Then

 Selection.EntireRow.Delete

 End If

 Selection.Offset(1, 0).Select

 Loop

End Sub

