
KSL Cars Classifieds Search and Regression

By Aaron Rickett

Executive Summary

My spreadsheet program is designed to help car buyers search the many advertisements on the KSL

website to find the best deal. The program will first allow the user to input their search criteria. Then the

program will interact with internet explorer to pull the listings from the KSL website and sort them into

their own sheets by make. After the listings are pulled, the program will perform an ordinary least squares

statistical regression using year, mileage and seller type as factors or predictors of price.

I designed this project to help with the task of buying a car for my own personal use. Since I am a college

student I need to know that I am getting a good deal. However in the future I would like to use this project

to buy cars of high value which I could then resell for a profit after fixing minor mechanical problems on

the cars.

Of key importance to this potential business is finding undervalued cars to buy. Many of the

advertisements are far overpriced to be worth buying. This is further complicated because there are many

factors to consider to each car and it is difficult to determine exactly how much each one should be

weighted when buying a car. For example is it a better deal to buy a 2010 Corolla with 25,000 miles for

$13, 000, or a 2004 Corolla with 150,000 miles. Since there is more to compare than simply price this sort

of analysis requires regression to best understand each factor influence in the price of the car. This tool

allows the user to see which cars are undervalued and by how much thus providing higher likelihood of

profit at resale.

In order to find a good deal without this tool it could potentially require many hours to pour through the

many listings. This program will automate this process and pull the key factors of each car so that the user

can get a good overview. The program also pulls the URLS of each listing so that the user can easily view

the listings of highest value. These features of the program make finding the car easier and less time

consuming.

Implementation

The following is a list of the major components of the program with a short description of each one.

Ribbon Customization.

In order to make this program easy to access and run, the Excel’s ribbon has been modified. There is a

new tab called Regression which has a button to start the program by calling the user form.

User Form.

The user form allows the user to in input data similar to the data required to interact with the KSL

website. However unlike the KSL website which consists only of check boxes, the user form consists of

list boxes, text boxes and a couple check boxes. Input data is checked for validity and modified if needed

before being passed to the web query.

Distance Query

The distance query allows the user to get additional functionality that the KSL form does support. The

distance query was a tool similar to the web control that used distanccheck.com to find the distance

between all counties and all other counties in all six states in order to estimate the distance between a

given zip and all other zip codes in that area. For speed of processing this information is held in the

hidden sheet “DistMatrix”. This information is used in the user form to create list of zip codes that are

within a certain distance of a central zip code. This list is the passed to the web control.

Web Control.

The web control accepts the data from the user form and then accesses the internet and fills out the form

on KSL and pulls up the matching listings. This is done using a special agent class. Once the listings are

pulled then web control finds the name of the link and the time it was posted, for each individual

advertisement and passes them to the web query.

Data Extraction.

The data from the listings is extracted by using the web query wizard tool in excel in automated VBA

fashion. It receives the name of each link and uses it to pull down the whole page and copy to a hidden

sheet called “dropsheet”.

Data Collection.

This component searches the dropsheet after each listing is dropped to find the key pieces of information

including, ad number, date, price, year, seller type, mileage, sold or not sold, city, state, zip, cell number,

phone number, contact name, URL, and description. This information is sorted by into a sheet whose

name is the model of the car of which the information is held.

Data Checking.

After all of the data is pulled. The data is checked in three parts. The first two parts check whether the

data is suitable for a regression. Then third check is used to check if the car is truly for an investment

opportunity.

Matrix Loading.

The data is read into the variant data type to be prepared for regression.

Regression.

The regression is executed using ordinary least squares and produces model coefficients, one for each of

the factors, year, seller type and mileage. This regression technique relies on mathematical matrix

operations.

Matrix Operations

This section includes a bundle of tools used to get the matrix inverse, transpose, and multiplication used

to do the regression.

Utilities. The utilities are functions that I made myself to ease several computing processes used

throughout my code.

Detailed Implementation

Upon opening the KSL Car Regression Tool workbook, the user will see the welcome page with brief

instructions for using the tool. This welcome also warns users not to modify information in the hidden

tabs. Fortunately the user should never have to know what is in the hidden tabs.

Figure 1: Welcome page and Ribbon Modification

Ribbon Customization

This button allows the user run the program without accessing the code. This is a good security measure

so that a user does not accidentally change any code resulting in a program that no longer works properly.

Upon clicking the start regression button the user form will appear.

User Form

The user uses the user form to select the car specification to run the search and the subsequent regression.

Since there is only a need to enter in models the makes are there simply for convenience of the user. KSL

will work fine if it you never enter the make of each model.

Figure 2: Select Make

Upon selecting a make from the first list box the model one will instantly populate with the corresponding

models for the make selected. The user can then select a model and then click add to move it to the list

box of selected models to use in the subsequent steps of the program.

Figure 3: Select Model and click Add

If you decided to remove models that you had previously selected then you can select the model you
wish to remove and then click remove. Removing all the selected models can be accomplished by
clicking remove all. The makes and models information originated as a text file of a database language
which had to be parsed in order to extract the makes and models.

The other text boxes work as one would expect. You can enter in any text you want, but the data will be

checked for suitability before it is used by the web control. The delete previous option will enable the user

to start fresh and will clear all worksheets with information from prior regressions. Alternatively, the user

may to update previous listings by reselecting the model. This will cause any additional listings to be

added to the same sheet for that model.

After makes are selected and other information is entered the user can click OK to begin, at which point

the data starts to be processed. Each of the pieces of data is checked. The min price is checked to be less

than the max price. The min year is checked to be less than the max year and to be less than the current

year plus 1.

One interesting thing is that KSL only has check boxes for every 10,000 miles and price for almost every

$1000. The mile and price data needed to be modified by rounding it in order to agree with the

checkboxes in KSL Car Classifieds.

KSL uses numbers for all of their buttons names. The button names for zip codes and makes do not

correspond, but for the other information it does. To speed up process time these codes were copied to a

text file and parsed and then stored in the workbook. The user form creates arrays with the zip and model

button numbers for use by the web control. To see the hidden button numbers see the hidden sheet

“Make_Model_Lemon”.

The user form then processes the information received from the distance query. Creates new sheets for

each model not previously searched and calls the web query and regression subroutines.

Distance Query

Notice the zip code and distance text boxes. These boxes and nothing with similar functionality is found

on the KSL Cars classifieds website. These boxes allow the user to specify a distance from a central zip

code, from which they are willing to travel to look at a car they may be interested in buying. After

clicking ok, the zip code is matched with a list of zip codes of all 6 states in which KSL operates on the

“Make_Model_Lemon” worksheet to find the corresponding county. The county is then found on the

“distMatrix” worksheet. The row on which it is found contains the distances between that county and all

other counties comprising 224 counties in total. These distances are compared to the distance entered in

the textbox. If the distance in the row is less than the distance specified by the user then the corresponding

county is selected and placed in an array. Then all counties are used back on the “Make_Model_Lemon”

worksheet to obtain all zip codes within those counties for individual entry as checkboxes on the KSL

website.

Figure 4: The Table that holds the distance information

Web Control

The web control uses the processed data from the user form and the agent class and methods to control

the internet by finding key elements of the HTML code of the KSL website and then executing them. In

the web control there was substantial error handling because even with the rounded prices and miles

amounts, not every mileage amount exists. Without error checking the web control would hang if it tried

to access a check box that does not exist. For this reason the max mileage was increased in increments of

10,000 until a match is found, and the min mileage is decreased by 10,000 until a match is found. The

prices button numbers were similarly handled but in increments of $1,000.

Each of the sets of buttons is cleared when the web control loads a new model. This is because if KSL

runs again in the same instance of internet explorer it will remember the previous values from the run.

The commands for the selecting the model are strategically placed last so that so that the other

specification do not need to be included in the loop, since all the specifications are being applied to all of

the models selected. After all information is loaded the load results button is accessed.

Figure 5: Illustration of the Web Control submitting data

Then the web control parses to find the number of results returned. If it finds 0 the next model

immediately begins loading.

If results are returned the Web Control continues to parse through the HTML until it finds the link to the

page containing all of the information for each listing.

This link is then passed to the Web Query wizard for extraction.

Data Extraction

The data extraction uses the link from the web control to copy the information from the specific listing

page and dump it into a worksheet called “dropsheet”. This is by far faster (and easier) than using the web

control to do the same job.

Figure 6: The Drop Sheet

Data Collection

With the information in the drop sheet, data collection can now pull the information from the sheet and

organize it in a sheet with the models name. This part included utilities to remove unwanted characters

from the data that are pulled.

Data Checking

After all listings for all models are dropped collected and sorted. The data checking begins. For each sheet

containing data from the listings, data checking begins.

There are three pars to data checking.

1. The first part checks for duplicate listings and removes duplicates. Since KSL default list order is

newest to oldest many people relist the same car very often. These duplicates have the potential to

skew the results of a regression, so they must be removed first.

2. The data used in the regression is checked for completeness. If any number is missing it is either

deleted or set to 0. It is set to 0 only if it is the mileage and the car is a new car sold by a

dealership.

3. The second par checks for any information in each cars description that identifies the car as

unsuitable for an investment opportunity. It does this by checking a listing of words that are used

to describe the poorest quality cars. If any of those words are found then the information is

deleted from the sheet. The list of words comes from the hidden sheet “Make_Model_Lemon”.

Matrix Loading.

After the data is checked it must be loaded into variants which can act like matrices. The prices are all

loaded into a variant with 1×n dimensions. The other factors are found and entered into another variant

with n×number_of_factors as its dimensions. Since matrices contain numbers, the seller type variable was

entered as a binary entry, 1 for “For Sale by Owner” and 0 for “Dealership”.

Regression.

An ordinary least squares regression is now done. The calculation involves the matrix operations

transpose, multiplication and inverse. The equation is as follows.

β = (XTX)-1XTY

Yhat =X β

Where β is the coefficient matrix and Yhat is an expected value for the price given a set of factors.

The coefficients are then reported to the results page. The Yhat can be used for further analysis but is out

of the scope of this program.

Figure 7: The Results Page

Matrix Operations.

Since the variants that contained the data were unsuitable for the matrix tools that come with excel (price

matrix is an n ×1 matrix). It was needful to recreate these function that can handle the variants. This

includes matrix transpose, matrix inverse and 2 functions for matrix multiplication, one for the n ×1 case

and for the n×n case. The matrix inverse operation uses the SVD class to use singular value

decomposition instead of Gauss-Jordan elimination to obtain the inverse.

Utilities.

These include several helpful functions and subs that were employed numerous times throughout the

project. It includes functions for removing certain characters from a string, array operations like array

compliments, function to get rid of empty entries in arrays, a function to tell if an array is empty etc.

Learning

I learned that VBA programming can be difficult and time consuming. But it is also rewarding to see the

creation of a new useful tool. I wish I had kept track of the hours but I think I have spent around 120

hours creating this program. I feel accomplished in that I can used this program to find a car with high

value, and also have a great project to show potential employers.

I felt that my project used most of the major concepts covered in class. I used arrays and variants

extensively. I created a user form which reacted to the event “change”. In the case of the Makes list box. I

used error checking extensively, as well as both tools to interact with the internet. I used created my own

functions. I learned to parse through 3text files to get the information needed to create the program. I

created and ran the distance query for almost 3days to obtain all of the distance information (25,088

iterations). I used many nested loops, and conditional statements.

There were even minor concepts covered that I learned, but did not learn in class. Such as arrays cannot

be passed as optional arguments, you have to use variants. I learned about converting and working with

dates. This is used when I got the time that each ad was made. I had to use the date serial and date value

functions to get an accurate time reading for recent updates.

I learned that it is far easier to use the web query wizard when getting information from the internet, than

the agent. The agent is best used to submit information over the internet. I learned several debugging

techniques such as the lines:

If i = 67 then

i = 67

End if

This is to call place a breakpoint in the middle of a loop when i = 67, and then stepping through the code

to check for errors with the locals window open.

I learned that it is very important to break my code into small manageable chucks. So that different

components can be called at different times. If there is one thing I would change I would try to do that

even more. I learned to create testing subs to check my functions and other subs.

I would like to add even more features to this program such as email and text message abilities. I would

also like to schedule reruns every so often so that my program can find cars with great value while I’m at

work. I would also like to do more with the regression to study the residuals and test if the regression

meets the assumptions needed for a regression and maybe automate a transformation of variables.

Difficulties

I eventually resolved all of my difficulties, but some of them had me stumped for a long time. Such as

while using the agent sometimes a string literal would execute just fine, but a variable version would not.

I after talking to Dr. Allen, we discovered that converting the variable to an integer or long and then right

back to a string worked.

I had a lot of difficulties with the agent. I then realized that for some reason the a.explorer.goback method

caused the internet explorer to go back but the text html that I was reading from would not go back while

using that command. For that reason it became necessary to get the URL while I was on the previous page

and then follow the link by text. In order to move back and have the html text update.

Assistance

I received some assistance from Dr. Allen especially about using the agent. All I did consult the internet

quite a bit for specific problems about functions and syntax I was not aware of. I did manage to find the

SVD class online which allowed me to preform my own version of matrix inverse much more quickly

than by doing the Gauss Jordan elimination that I learned in linear algebra class. However excel has a

matrix inverse function called MINVERSE which works on multidimensional arrays. I however needed it

to work for variants. So I used their code from Vanna. I also of course did not create the agent class.

