

Tax Lien Aggregator

MBA 614 - VBA Final Project

Adam J. Hughes
4/13/2012

Executive Summary

Final Project Description

Investors that seek substantial returns by acquiring properties that

are distressed usually pay a subscription fee to local firms that

provide listings of these properties. These firms typically include

title companies, data aggregators, or others that specialize in

gathering such information for local real estate professionals.

There are a lot of publicly available websites that provide various

types of information regarding distressed properties. These include

sites such as www.ksl.com, Zillow.com, realtytrac.com, etc. Most

sites with reliable information require a subscription fee. However,

most properties that are distressed have property taxes that have

not been paid. County websites list those properties that have tax

liens against them for back taxes that have not been paid. In Salt

Lake County, this website is:

http://www.treasurer.slco.org/delqTax/cfml/delinqall.cfm.

The problem with this website is that is provides limited information

that in and of itself is not very useful because it doesn’t include the

address information for the property, only the parcel number. A

potential homeowners or investors looking for distressed properties

to purchase in Salt Lake County have to access two separate

websites in order to determine the address of properties that are

subject to a tax sale due to delinquent property taxes. Another

website, http://assessor.slco.org/cfml/query/query2.cfm, can be

used to find a property’s address by entering the parcel number

into a search query. This makes it virtually impossible to look for

distressed assets in specific geographic areas.

This final project is a web query that aggregates the tax lien

information from the first website and address information from

the second website. In addition, the second website has an

interface with Google Maps that provides coordinate information.

This coordinate information includes longitude and latitude that can

be used to plot the location of the property in Google Earth Pro.

The query will be limited to those properties that are subject to a

tax sale. This will allow a homeowner or investor to visually see the

location of all properties in Salt Lake County that will be sold at

auction by the taxing authority if the back taxes are not paid in full

within five years.

Code Elements

The code that was written for the final project contains three parts:

the webQuery sub-procedure to query the county website, a

startingRow function that determines where data should start being

entered on the query spreadsheet, and the obtainAddress sub-

procedure to query the assessor website.

When the county website is queried it lists only 200 properties on

each page, and the user has to navigate to the next page to see the

next 200 properties. The webQuery sub gathers parcel #, owner

name, category code, category description, status, balance due, first

delinquent tax year, and tax sale year for each property on each

page. It starts on the first page and extracts all the information

from that page and stores it on sheet1. It then moves on to the

next page and loops to each subsequent page. Each time the query

is run, it can download information on 200 properties.

http://www.ksl.com/
http://www.treasurer.slco.org/delqTax/cfml/delinqall.cfm
http://assessor.slco.org/cfml/query/query2.cfm

The startingRow function evaluates the row where the last entry

was stored from the page last queried and indicates where the first

entry of the current page being queried should be entered. The

startingRow function allows the webQuery sub-procedure to loop

its query on each page of the county website without overwriting

information that was already saved on sheet1.

Whereas the county website provides information on 200

properties at a time, the assessor’s website provides information on

only one property at a time. As such, it takes a significantly longer

amount of time to gather address information. Whereas, the

county website can be queried in only a few minutes, the assessor’s

website may take hours. For this reason, the query for the

assessor’s website is broken out into a different sub-procedure,

allowing the user to run each query at different times.

Due to differences in the way the two websites are designed, the

obtainAddress sub-procedure needed to make significant

adjustments to html text in order to make it useable. That is one

reason why the code for this sub-procedure is so long.

Learning Outcomes

I didn’t realize when I started this project, that I would have to learn

a substantial amount of additional VBA functionalities and HTML

properties that were not covered in class. To begin with, the county

website presents the results of its query in an html table. I had to

learn how to extract information from an html table. I found,

http://www.vbaexpress.com/forum/showthread.php?t=31831,

which discusses how to do this and provided some code that I used

in the final project. I still had to manipulate this code so that it

would work on the county website. Figuring this out took the

majority of my time on the project.

For the obtainAddress query, I was able to use the code that was

written by Professor Allen in the agent.xlsm file for querying

websites. I still had to manipulate the code in order to get it to

work for the assessor website.

In total, I would estimate that I spent fifty hours on this project. It

was very challenging, but also very rewarding.

Results and Next Steps

The queries work beautifully and I was able to download

information for 525 properties. Obtaining the addresses took

almost two hours, but because it worked so well, I was able to let it

run by itself. If I had $300 to purchase Google Earth Pro, the next

step would be to import the excel file into Google Earth Pro to see

the location of each property within Salt Lake County.

Additional functionality, which I may add in the future, could

include removing all parcels with no address from the file and

cleaning up the address lines for street types that do not appear in

the correct column. Additional query information could also be

gathered from the assessor’s website including obtaining land

record, residence record, tax valuation, adjoining values,

neighborhood values, and parcel characteristic information.

http://www.vbaexpress.com/forum/showthread.php?t=31831

Implementation

webQuery Sub-Procedure

Initial Formatting

In order to ensure that the results of the webQuery are not

overwriting and mixing with a previous query, the first thing the

webQuery sub-procedure does is to clear the contents of sheet1. In

order to reformat the blank sheet, the first section of code creates

column heading for the webQuery as shown below:

Notice that a module level variable, “c”, is declared. This was

necessary in order to store the results of the startingRow function

at the module level. This will be described in more detail further on.

Declaring First Set of Variables

After selecting sheet1 as the active sheet and cell A1 as the starting

location for the query, the next step was to declare a few things,

beginning with a As New agent. This will allow the code to

reference the class module named “agent” that was prepared by

Professor Allen. Declaring getElementbyID As Object will allow the

code to access a drop down box on the county website and enter a

value. A variable “page” was declared and the value was set at one.

This will indicate which page of the multi-page (remember that only

200 results are shown on each page) query the code is currently

performing operations for.

Accessing the County Website

The code above was used to access the county treasurer’s website.

This was perhaps the most difficult part of the final project.

Because the county treasurer’s website has some sort of sessions

functionality built into it, I couldn’t access the query site directly

from VBA. I first had to navigate to two other website before I

could get to the query site. The initial website’s address is in the

second line of code. I then navigated to a hyperlink attached to the

“Important Information” text which led me to another site. See the

screenshot below for what this hyperlink looks like:

The next website had the exact same address as the first one except

it ended with “dt2all.cfm” instead of “dt1all.cfm”. For some reason,

which I couldn’t figure out, I had to access the “dt1all.cfm” website

before I could navigate to the “dt2all.cfm” website. At the bottom

of this website was a button with the text “Access Delinquencies” as

shown below:

I couldn’t figure out how to navigate to this button and click on it,

given the code in the agent.xlsm file that Professor Allen had

prepared, so I had to do some searching on the internet and found

that I could use the line “a.document.Forms(0).submit” in order to

navigate to the query website.

Finally, I figured out how to get to the query website which is shown

below:

This interface is pretty useless if you’re trying to download the

entire database of information that the county offers. There are

really three options to get the information. The first would involve

browsing by every letter of an owner’s last name. The second

would involve doing a search by every category. The third would

involve searching for property by status. As I am interested in only

those parcels that are subject to a tax sale, the last option is the one

that makes the most sense. The code below is what I used to select

“Tax Sale Certified” from the “Search by Status:” box and submit the

request:

Notice that I had to use the .SendKeys function in order to tab over

to the submission box and submit it using the enter key, which is

represented by the symbol ~. I couldn’t’ figure out how to navigate

to this submission box and activate it by using the html page source

code. This code has not had any difficulty in navigating to the query

page and selecting the appropriate status to search for.

Declaring a Second Set of Variables

The code above begins with “Start:”, which is referenced from a

piece of code at the end of the sub-procedure. This is the location

in the code where the sub-procedure starts-over for a subsequent

page of results (only 200 results are shown on each page).

Following this are the declaration of some other items. I couldn’t

even begin to explain what the first five declarations are doing. I

gathered this code from the following website:

http://www.vbaexpress.com/forum/showthread.php?t=31831.

What I understand from this code is that the query results appear in

an html table as shown below:

There are tag names within the html code called “td” tags and

“span” tags. The declarations above are to set a collection of these

tags which will be searched through later on in the code.

Extracting Item Numbers

The first data item to download from the query is the item number,

which will range from 1 to 200, depending on the number of

properties that are returned from the search query. The next

section of code downloads these items numbers:

http://www.vbaexpress.com/forum/showthread.php?t=31831

I’m not entirely sure what the first two lines of code are doing, but

the next line down calls the startingRow function, which determines

what row the data should be entered in on the sheet1 worksheet.

The variable r is set to equal this starting ro. The next section of

code is a loop that goes through each tag labeled “td” in the html

source and selects those “td” tags with a class name of

“divBorderBoth” and returns the text that is within this tag, which is

the item number. These get entered into column A on sheet1. The

debug.print lines are just to see if the code is operating correctly.

Ending the webQuery Sub-Procedure

The next section of code is very important and was necessary in

order to stop the sub-procedure from continuing to re-enter the

query results from the last page of the query. I’m sure there is

another way to do this, but I couldn’t figure it out. What I did here

was to see if the first item # on the current query page had already

been entered in sheet1, and if it had already been entered, then it

stops the sub-procedure from continuing.

As the first item # on the query pages will be a 1, 201, 401, 601, etc.,

the code checks first to see if the current item it is downloading is

the first item # on a query page. The “If Round” section of the code

performs this function. If the current item is the first item # on a

query page the code within the if function continues to operate. It’s

next step is to determine whether this item # has already been

recorded on sheet1. It does this by determining the last row of data

that has been entered and saving it as the variable “lastRow”. It

then performs a loop to determine whether the current item # has

already been entered on sheet1.

However, because the current item # is first save to the worksheet

before this check is performed, the code was altered to look

through the range of items beginning with row 1 all the way

through the second to last row. If the current item # is found

within this range, it means that the sub-procedure has already

performed a query on this page and downloaded information for

every item #. If the current item # is found, the code exits the sub-

procedure and deletes the contents of the last row.

The last section of code i“r=r+1”, moves the code onto the next

empty row for the next item # and loops back to the top of the For

Each loop.

Downloading the Parcel Number

The next snippet of code downloads the parcel number. As

previously mentioned, the startingRow function determines what

row the data should begin to be entered on in the sheet1

worksheet. This is found in all subsequent sections of code that

download data from the query pages, so it won’t be mentioned

again to avoid needless repetition.

The code for downloading the item # is similar to this code except

that a “span” tag was used in the html code instead of a “td” tag.

The class name was different as well, with “textAlignLeft”. As a

parcel number is entered the format, “XX-XX-XXX-XXX-XXXX”, The

span tags were then searched to return only the inner text that had

the symbol “-“ in it.

However, this didn’t eliminate all the inner text that wasn’t a parcel

number. The next line of code also checks to make sure that the

first character in the string is a number. If these two checks are

affirmative, then the string is saved on sheet1 in column 2. As not

all the strings within the “span” tags are parcels, this left spaces in

column 2 for these items.

The next section of code checks to see if a value was stored in

sheet1 for the current “span” tag it is evaluating. If no value was

entered and the cell is blank, then the code does not execute

“r=r+1” to move down to the next row. Instead it stays on the

current row until it finds a parcel number to enter into the cell. This

ensures that there are no empty spaces in column 2 and that the

item #’s match up with the corresponding parcel numbers.

Download the Owner Name

This was the easiest data to extract from the html code because of

the way it was encoded. The code is very similar to the other item #

and parcel number code. However, instead of using class name to

determine the desired text, colSpan was used. Each Owner Name

was encoded to colSpan 4, making this rather easy to download.

The only difference, is that this code would return the column

heading, “Owner Name”, which has already been entered on sheet!.

So the code was written to exclude this value from being entered on

sheet1. The last section of code does the same thing as the last

section of code for the parcel number. That is, making sure that no

blank cells are created.

Downloading the Category Code

This code snippet is pretty straightforward. It’s similar to the other

code items listed above, with little variation. There’s nothing really

new with this code.

Downloading the Category Description

 Again, this is similar to the other code that’s been written thus far

for the other data items. The only difference is that the code would

return the column headings for all the items, so the following code

was written to exclude these from being entered on sheet1:

Downloading the Status

This code is again, pretty similar to what’s been written so far, so

nothing really new here. The only difference is that it excludes all

inner text items in “td” tags that are numeric. This is because the

code was including some non-desirable text that wasn’t related to

status. This eliminates those items.

Downloading the Balance Due

The following code downloads the outstanding taxes that are due.

This was pretty simple to write, using the code that I had written so

far, and doing some minor changes. By searching for inner text

items that began with a dollar sign ($), I was able to isolate the

desired text. See code below.

Downloading the First Delinquent Year

Unfortunately, the way the html code was written, the first

delinquent year and tax year sale (two separate data fields) could

not be downloaded separately from the website. As these items

were found within “td” tags, class names of “divBorderBottom”, and

align of “center”, they had to be downloaded concurrently and

stored on sheet 1 in column 8.

In fact, the balance due item also had the same html encoding but

because they could be distinguished by the $ sign (which is

represented as Chr(36) in ASCII as noted above in the coding) they

could be isolated or in this case, eliminated from the query results

for the first delinquent tax year and tax year sale.

Because the resulting download to sheet1 in column 8 had the first

delinquent tax year and the tax year sale in the subsequent row, the

following code was written to move the value in every other cell

over to column 9, adjacent to the cell in column 8 that the first

delinquent tax year value was recorded in:

Notice that this is the section of the code where the variable “page”

is used to determine the row (variable r) that the code should start

on (see first line of code).

This works for moving every cell, but because the code terminates

when the cell three rows down is blank, it terminates before moving

the very last tax year sale entry. The following code was written to

account for this discrepancy:

There is still one remaining problem, and that is, there are now

blanks in column 8, where the tax year sale values used to be.

Because these values had been moved over to the adjacent cell in

column 9, the same rows in column 8 and column 9 are blank. The

following code was written to copy and paste the values in column 8

and 9 so that there were no blank cells and that the values in these

columns corresponded to the data in columns 1 through 7:

 Notice the use of variables, r, c, and z. The variable z was used to

create a loop that would run the code for column 8 and then for

column 9. Variables r and c were used because these values had

already been determined previously in the code to determine the

starting row on which each web query page was to be downloaded.

By using these variables, and there corresponding values, the code

will execute on the items that had just been downloaded to the

sheet1 worksheet and needed to be separated out into column 9

and have the empty spaces removed.

Navigate to Next Query Page

After all the data on the current query page is downloaded, the

following code instructs the interpreter to move on to the next

query page. Notice the “next page” hyperlink on the web page

appears as follows:

The code instructs the interpreter to continue to the next page by

selected the “next page” hyperlink. It then adds one value to the

page and resets c (a variable used to determine what column the

interpreter should begin saving data to on sheet1) to 1.

I’m not so sure that the Do Loop is necessary here, as the GoTo

instruction moves to the Start: location at the top of the code. This

Do Loop is really just a remnant of a loop that wasn’t effective at

terminating the sub-procedure. With the GoTo command, the

interpreter is sent to the Start: location. Code within the item #

download section (see above) terminates the sub-procedure.

startingRow Function

The code above is for the startingRow function that evaluates the
sheet1 workbook to determine the very last row and column that
data had been entered on. It then adds one value to each and
stores the row as “starting row” and the column in variable “c”, a
module level variable. As previously discussed, the “starting row”
function is called each time a new section of the code is run for
downloading a new data item from the county treasurer’s website.

obtainAddress Sub-Procedure

As previously mentioned, this sub-procedure accesses the Salt Lake

County Assessor’s website and performs a search for property

addresses and coordinates using parcel numbers. It then

downloads the results into the sheet1 workbook.

Declaring Variables

The first section of code declares a lot of variables used throughout
the sub-procedure. The first two variables are similar in name and
function to those declared in the webQuery sub-procedure.

Formatting and Begin For Loop

This section of code creates column headings for the address and
coordinates. In addition, it determines the last row of the existing
data (downloaded by the webQuery sub-procedure in columns 1 to
9) and creates a For Loop beginning at row 2 (the row directly below
the column headings) and ending with the last row of data. In this
way, the interpreter will search for address and coordinate data for
each row of data.

Duplicate Parcel Numbers

The address and coordinate search will be conducted using parcel
numbers. The county treasurer’s website maintains database
entries for each tax category that is past due, so the same property
can appear on multiple lines. Rather than performing a query on a
parcel number for which the address and coordinates has already
been gathered for, code was written to check if the current row it is

evaluating has a duplicate entry and to copy that information from
the duplicate entry into the current row. This code was written to
avoid performing the same parcel query over and over again.

Accessing the County Assessor’s Website

The following code was written to access the County Assessor’s

website:

Because the time involved with this query is so extensive, I selected

not to show internet explorer. This code is pretty straightforward

and uses the class module “agent” prepared by Professor Allen.

This is what the website looks like. The parcel number search box is

near the bottom of the site.

Extracting Address Information

Once the parcel query is submitted the next website looks like this:

The address information is located in the upper left and the

coordinates appear directly below the Google Maps insert.

The first two lines of code above are copied from the “agent” file

prepared by Professor Allen. The next lines of code navigate to the

html source code with the text of “Owner” and then within that text

section moves to the “style” tag and retrieves the text from the

beginning of that tag to the symbol “<”.

No Address Found

Some parcel numbers do not have addresses associated with them.

The code above enters N/A into each the corresponding cell for the

address columns.

It then instructs the interpreter to go to the “Ending:” location of

the sub-procedure which is near the bottom of the code, so that it

avoids the code dealing with text manipulation, which I’ll discuss

next.

Address Text Manipulation

The address text that is returned from the html source code looks

like this:

"float:

right;">904 E TENDOY CT&

nbsp;

Code was written to find and save only the relevant portions of

code, and saves each element into a different column. After

processing this text, the result is:

Street Number: 904
Direction: E

Street Name: TENDOY
Street Type: CT

The code that accomplishes this text manipulation is below:

Extracting Coordinate Information

The following code moves to the text where google maps is used

and to the src= element. It returns the text from the end of this

element title to the text “”. This text is in the format:

"http://maps.google.com/staticmap?center=40.672785260,-

111.853920660&zoom=13&size=160x120&maptype

=roadmap&markers=40.672785260,-

111.853920660,blues&key=ABQIAAAAPCYJ6hssEfoW91ymjvlIX

hRYOFoJhxSZRZ7WSbHGx8xboI4G5xRcrRj2mSo2NzD-

OpLj3cYhpbQdiA">

40.672785260,-111.853920660"margin: 0px;" id="seek1"

method="get" name="seek1"

action="http://search.slco.org/search?">

The following code manipulates the text in order to extract the

relevant information:

The result is:

Lattitude: 40.672785260
Longitude: -111.853920660

This information is then stored in sheet1. The location “Ending:” is
referenced earlier in the sub-procedure and is navigated to in
instances where a query has already been run for a duplicate entry
(see above for where it is referenced). The sub-procedure is then
ended.

Learning and Conceptual Difficulties

The most challenging aspect of this project was trying to find the

appropriate code for extracting what I needed from the websites in

question. Because the examples shared in class were in many ways

not similar to the websites I was using, it was difficult to determine

how to access the County Treasurer’s website. As luck would have

it, I figured it out, but only after tens of hours spent doing so. Once

that was figured out, the rest of the assignment was not as

challenging.

Had I more time to spend on the project, I would have added ribbon

functionality, downloaded additional data, and formatted the file to

make it more attractive. I also would have gone through my code to

see how I could make it more efficient. I think spending fifty hours

on a project should be enough, but these are just some thoughts for

ways it can be improved.

As I side note, after spending considerable time trying to figure out

how to access the County Treasurer’s website, I almost gave up

entirely and was about to change my final project (or not do it all

and take a C in the class). It was a miracle that I figured it out and

I’m glad I did. Now I have something to show to my friends and

family for all the hard work!

