Tax Lien Aggregator

MBA 614 - VBA Final Project

Adam J. Hughes
4/13/2012

Executive Summary

Final Project Description

Investors that seek substantial returns by acquiring properties that
are distressed usually pay a subscription fee to local firms that
provide listings of these properties. These firms typically include
title companies, data aggregators, or others that specialize in
gathering such information for local real estate professionals.

There are a lot of publicly available websites that provide various
types of information regarding distressed properties. These include
sites such as www.ksl.com, Zillow.com, realtytrac.com, etc. Most
sites with reliable information require a subscription fee. However,
most properties that are distressed have property taxes that have
not been paid. County websites list those properties that have tax
liens against them for back taxes that have not been paid. In Salt
Lake County, this website is:
http://www.treasurer.slco.org/delgTax/cfml/delingall.cfm.

The problem with this website is that is provides limited information
that in and of itself is not very useful because it doesn’t include the
address information for the property, only the parcel number. A
potential homeowners or investors looking for distressed properties
to purchase in Salt Lake County have to access two separate
websites in order to determine the address of properties that are
subject to a tax sale due to delinquent property taxes. Another
website, http://assessor.slco.org/cfml/query/query2.cfm, can be

used to find a property’s address by entering the parcel number
into a search query. This makes it virtually impossible to look for
distressed assets in specific geographic areas.

This final project is a web query that aggregates the tax lien
information from the first website and address information from
the second website. In addition, the second website has an
interface with Google Maps that provides coordinate information.
This coordinate information includes longitude and latitude that can
be used to plot the location of the property in Google Earth Pro.

The query will be limited to those properties that are subject to a
tax sale. This will allow a homeowner or investor to visually see the
location of all properties in Salt Lake County that will be sold at
auction by the taxing authority if the back taxes are not paid in full
within five years.

Code Elements

The code that was written for the final project contains three parts:
the webQuery sub-procedure to query the county website, a
startingRow function that determines where data should start being
entered on the query spreadsheet, and the obtainAddress sub-
procedure to query the assessor website.

When the county website is queried it lists only 200 properties on
each page, and the user has to navigate to the next page to see the
next 200 properties. The webQuery sub gathers parcel #, owner
name, category code, category description, status, balance due, first
delinquent tax year, and tax sale year for each property on each
page. It starts on the first page and extracts all the information
from that page and stores it on sheetl. It then moves on to the
next page and loops to each subsequent page. Each time the query
is run, it can download information on 200 properties.

http://www.ksl.com/
http://www.treasurer.slco.org/delqTax/cfml/delinqall.cfm
http://assessor.slco.org/cfml/query/query2.cfm

The startingRow function evaluates the row where the last entry
was stored from the page last queried and indicates where the first
entry of the current page being queried should be entered. The
startingRow function allows the webQuery sub-procedure to loop
its query on each page of the county website without overwriting
information that was already saved on sheet1.

Whereas the county website provides information on 200
properties at a time, the assessor’s website provides information on
only one property at a time. As such, it takes a significantly longer
amount of time to gather address information. Whereas, the
county website can be queried in only a few minutes, the assessor’s
website may take hours. For this reason, the query for the
assessor’s website is broken out into a different sub-procedure,
allowing the user to run each query at different times.

Due to differences in the way the two websites are designed, the
obtainAddress sub-procedure needed to make significant
adjustments to html text in order to make it useable. That is one
reason why the code for this sub-procedure is so long.

Learning Outcomes

| didn’t realize when | started this project, that | would have to learn
a substantial amount of additional VBA functionalities and HTML
properties that were not covered in class. To begin with, the county
website presents the results of its query in an html table. | had to
learn how to extract information from an html table. | found,
http://www.vbaexpress.com/forum/showthread.php?t=31831,

which discusses how to do this and provided some code that | used
in the final project. 1 still had to manipulate this code so that it

would work on the county website. Figuring this out took the
majority of my time on the project.

For the obtainAddress query, | was able to use the code that was
written by Professor Allen in the agent.xlsm file for querying
websites. | still had to manipulate the code in order to get it to
work for the assessor website.

In total, | would estimate that | spent fifty hours on this project. It
was very challenging, but also very rewarding.

Results and Next Steps

The queries work beautifully and | was able to download
information for 525 properties. Obtaining the addresses took
almost two hours, but because it worked so well, | was able to let it
run by itself. If | had $300 to purchase Google Earth Pro, the next
step would be to import the excel file into Google Earth Pro to see
the location of each property within Salt Lake County.

Additional functionality, which | may add in the future, could
include removing all parcels with no address from the file and
cleaning up the address lines for street types that do not appear in
the correct column. Additional query information could also be
gathered from the assessor’s website including obtaining land
record, residence record, tax valuation, adjoining values,
neighborhood values, and parcel characteristic information.

http://www.vbaexpress.com/forum/showthread.php?t=31831

Implementation

webQuery Sub-Procedure

Initial Formatting

In order to ensure that the results of the webQuery are not
overwriting and mixing with a previous query, the first thing the
webQuery sub-procedure does is to clear the contents of sheetl. In
order to reformat the blank sheet, the first section of code creates
column heading for the webQuery as shown below:

Dim ¢ As Integer

Sub web{uery()

Sheets ("Sheetl") .Cells.Clear

H#rr

"Parcel #"

"Cwner HName™

"Category Code™
"Category Description™
"Status"

range ("al"™) .Value
range ("b1l"™) .Value
range ("cl™) .Value
range ("d1l"™) .Value
range ("el"™) .Value
range ("£1") .Value
range ("gl"™) .Value "Balance Dues™

range ("hl"™) .Value "First Deligquent Year™
range ("il") .Value = "Tax Sale Hame"

Notice that a module level variable, “c”, is declared. This was
necessary in order to store the results of the startingRow function
at the module level. This will be described in more detail further on.

Declaring First Set of Variables

After selecting sheetl as the active sheet and cell Al as the starting
location for the query, the next step was to declare a few things,
beginning with a As New agent. This will allow the code to
reference the class module named “agent” that was prepared by
Professor Allen. Declaring getElementbyID As Object will allow the
code to access a drop down box on the county website and enter a
value. A variable “page” was declared and the value was set at one.
This will indicate which page of the multi-page (remember that only
200 results are shown on each page) query the code is currently
performing operations for.

Sheets ("Sheetl™) .range ("al™) .5elect

Dim a &= New agent

Dim getElementbyID A= Object
Dim page L= Integer

page = 1

Accessing the County Website

a.visible = True

a.openpage "http://www.treasurer.slco.org/delgTax/cfml/dtlall.cfm", True
2.followLinkByText ("Important Information™

a.document.Forms (0) .submit

a.waitForLoad

The code above was used to access the county treasurer’s website.
This was perhaps the most difficult part of the final project.
Because the county treasurer’s website has some sort of sessions
functionality built into it, | couldn’t access the query site directly
from VBA. | first had to navigate to two other website before |
could get to the query site. The initial website’s address is in the
second line of code. | then navigated to a hyperlink attached to the

“Important Information” text which led me to another site. See the
screenshot below for what this hyperlink looks like:

Please proceed to the "Important Information” page from where you will
be able to access the delinquencies

Delinquent Property Tax: NEXT b Important Information

@ This site All SLCo

The next website had the exact same address as the first one except
it ended with “dt2all.cfm” instead of “dtlall.cfm”. For some reason,
which | couldn’t figure out, | had to access the “dtlall.cfm” website
before | could navigate to the “dt2all.cfm” website. At the bottom
of this website was a button with the text “Access Delinquencies” as
shown below:

Please proceed to the Delinguent Property Tax records below.

Access Delinguencies

| couldn’t figure out how to navigate to this button and click on it,
given the code in the agent.xlsm file that Professor Allen had
prepared, so | had to do some searching on the internet and found
that | could use the line “a.document.Forms(0).submit” in order to
navigate to the query website.

Finally, | figured out how to get to the query website which is shown
below:

Select a Search Method Glossary of Terms

1) Parcel number (omit dashes):

[Search by Parcel]

2) Enter all or part of the owner’s last name:

| Search by Cwner |

3) Browse owner's last names:

(a] (&) [¢] (o] [g] [§]

v (o] (] [a] [R] [s

4) Search by category:
Select One

-] [@]
c] [=]
=] [<]
=] (=]
<] [7]
~] (=]

= E

w

4

Search by Category |

5) Search by status:
Select One - | Search by Status |

This interface is pretty useless if you’re trying to download the
entire database of information that the county offers. There are
really three options to get the information. The first would involve
browsing by every letter of an owner’s last name. The second
would involve doing a search by every category. The third would
involve searching for property by status. As | am interested in only
those parcels that are subject to a tax sale, the last option is the one
that makes the most sense. The code below is what | used to select
“Tax Sale Certified” from the “Search by Status:” box and submit the
request:

a.document . getElementbyID ("formStat™) .Value = "TAX 5ALE CERTIFIED ™
a.document .getElementbyID ("formStat™) .Focus

Application.SendEeys "{TAB}", True

Application,. SendKeys "~", True

a.waitForLoad

a.waitForLoad

Notice that | had to use the .SendKeys function in order to tab over
to the submission box and submit it using the enter key, which is
represented by the symbol ~. | couldn’t’ figure out how to navigate
to this submission box and activate it by using the html page source
code. This code has not had any difficulty in navigating to the query
page and selecting the appropriate status to search for.

Declaring a Second Set of Variables

Start:

Dim HTMLdoc As HTMLDocument

Dim TDelements As IHTMLElementCollection
Dim TDelement &s HTMLTableCell

Dim Spanelements As IHTMLElementCollection
Dim Spanelement &z HTMLTableCell

Dim r &As Long

Dim nmumber As Integer

Dim parcel A=s String

The code above begins with “Start:”, which is referenced from a
piece of code at the end of the sub-procedure. This is the location
in the code where the sub-procedure starts-over for a subsequent
page of results (only 200 results are shown on each page).
Following this are the declaration of some other items. | couldn’t
even begin to explain what the first five declarations are doing. |
gathered this code from the following website:
http://www.vbaexpress.com/forum/showthread.php?t=31831.
What | understand from this code is that the query results appear in

an html table as shown below:

Current data displayed: All parcels with Status "TAX SALE CERTIFIED ™
523 records found totaling $4,181,606.12
First records displayed up to 200. Select page numbers below to see mare.
1 2 3 nextpage >>
|Parcel # |Private Sale # Owner Name
Cat. 1st Year Tax Sale
Code Cat. Desc. Status Balance Due Deling. Year
1 |22-04-203-025-0000 4500 SOUTH PROJECT LLC
TAX SALE
202 GEMERAL PROPERTY CERTIFIED $7.654.33 2007 2012
2 |22-04-303-035-0000 4500 SOUTH PROJECT LLC
TAX SALE
206 SLC SUBURB SANI DIST 1 CERTIFIED $370.44 2009 2014
3 |22-04-303-035-0000 4500 SOUTH PROJECT LLC
TAX SALE
258 SLVLESA UPD FEES CERTIFIED $403.05 2010 2015

There are tag names within the html code called “td” tags and
“span” tags. The declarations above are to set a collection of these
tags which will be searched through later on in the code.

Extracting Iltem Numbers

The first data item to download from the query is the item number,
which will range from 1 to 200, depending on the number of
properties that are returned from the search query. The next
section of code downloads these items numbers:

http://www.vbaexpress.com/forum/showthread.php?t=31831

S5et HTMLdoc = a.document
S5et TDelements = HIMLdoc.getElementsByTagName ("TD™)

r = startingRow
Dim lastRow As Integer

Dim g &= Integer

For Each TDelement In TDelements

If TDelement.className = "divBorderBoth" Then
number = TDelement.innerText
Sheets ("Sheetl™) .Select
Sheets ("Sheetl™) .Cells(r, 1).Valuse = number
If Round((({number - 1)} / 200), 0) = {((number - 1) / 200) Then

Debug.Print number
range ("al") .S5elect
lastRow = Selection.End(x1Down) .Row
Debug.Print lastRow - 1
For g = 1 To lastRow - 1
If Cells(g, 1).Value = number Then
Cells(lastRow, 1) .ClearContents
Exit Sub
End If
Hext
End If
r=r+1
End If
Hext

I’'m not entirely sure what the first two lines of code are doing, but
the next line down calls the startingRow function, which determines
what row the data should be entered in on the sheetl worksheet.
The variable r is set to equal this starting ro. The next section of
code is a loop that goes through each tag labeled “td” in the html
source and selects those “td” tags with a class name of
“divBorderBoth” and returns the text that is within this tag, which is
the item number. These get entered into column A on sheetl. The
debug.print lines are just to see if the code is operating correctly.

Ending the webQuery Sub-Procedure

The next section of code is very important and was necessary in
order to stop the sub-procedure from continuing to re-enter the
query results from the last page of the query. I'm sure there is

another way to do this, but | couldn’t figure it out. What | did here
was to see if the first item # on the current query page had already
been entered in sheetl, and if it had already been entered, then it
stops the sub-procedure from continuing.

As the first item # on the query pages will be a 1, 201, 401, 601, etc.,
the code checks first to see if the current item it is downloading is
the first item # on a query page. The “If Round” section of the code
performs this function. If the current item is the first item # on a
guery page the code within the if function continues to operate. It's
next step is to determine whether this item # has already been
recorded on sheetl. It does this by determining the last row of data
that has been entered and saving it as the variable “lastRow”. It
then performs a loop to determine whether the current item # has
already been entered on sheetl.

However, because the current item # is first save to the worksheet
before this check is performed, the code was altered to look
through the range of items beginning with row 1 all the way
through the second to last row. If the current item # is found
within this range, it means that the sub-procedure has already
performed a query on this page and downloaded information for
every item #. If the current item # is found, the code exits the sub-

procedure and deletes the contents of the last row.

The last section of code i“r=r+1”, moves the code onto the next
empty row for the next item # and loops back to the top of the For
Each loop.

Downloading the Parcel Number

'"the following code will download the Parcel number
Set HTMLdoc = a.document
Set Spanelements = HTMLdoc.getElementsByClazsName ("textilignLeft™)

r = startingRow
For Each Spanelement In Spanelements
If Spanelement.className = "textAlignLefc™ Then
parcel = Spanelement.innerText
If In3tr(l, parcel, "-", vbTextCompare) > O And _
IsNumeric (Midiparcel, 1, 1)) = True Then
Sheets ("Sheetl") .Cell=s(r, 2).Value = parcel
End If
End If
If Not Sheets("Sheetl”™) .Cells(r, 2).Value = "" Then
r=r+1
End If
Hext

The next snippet of code downloads the parcel number. As
previously mentioned, the startingRow function determines what
row the data should begin to be entered on in the sheetl
worksheet. This is found in all subsequent sections of code that
download data from the query pages, so it won’t be mentioned
again to avoid needless repetition.

The code for downloading the item # is similar to this code except
that a “span” tag was used in the html code instead of a “td” tag.
The class name was different as well, with “textAlignLeft”. As a
parcel number is entered the format, “XX-XX-XXX-XXX-XXXX”, The
span tags were then searched to return only the inner text that had
the symbol “-“in it.

However, this didn’t eliminate all the inner text that wasn’t a parcel
number. The next line of code also checks to make sure that the
first character in the string is a number. If these two checks are

affirmative, then the string is saved on sheetl in column 2. As not

all the strings within the “span” tags are parcels, this left spaces in
column 2 for these items.

The next section of code checks to see if a value was stored in
sheetl for the current “span” tag it is evaluating. If no value was
entered and the cell is blank, then the code does not execute
“r=r+1” to move down to the next row. Instead it stays on the
current row until it finds a parcel number to enter into the cell. This
ensures that there are no empty spaces in column 2 and that the
item #'s match up with the corresponding parcel numbers.

Download the Owner Name

'"the following code will download the Cwner Name
r = startingRow
Dim owner A= String
For Each TDelement In TDelements
If TDelement.colSpan = "4" Then
aowner = TDelement.innerText
Sheets ("Sheetl™) .Select

If Not owner = "Cwner Name" Then "new
Sheets ("Sheetl™) .Cell=(xr, 3).Valus = owner
If Hot Sheets("Sheetl").Cells(r, 3).Value = "" Then
r=r+1
End If '"new
End If
End If

Hext

This was the easiest data to extract from the html code because of
the way it was encoded. The code is very similar to the other item #
and parcel number code. However, instead of using class name to
determine the desired text, colSpan was used. Each Owner Name
was encoded to colSpan 4, making this rather easy to download.
The only difference, is that this code would return the column
heading, “Owner Name”, which has already been entered on sheet!.

So the code was written to exclude this value from being entered on
sheetl. The last section of code does the same thing as the last
section of code for the parcel number. That is, making sure that no
blank cells are created.

Downloading the Category Code

'"the following code will download the category code
r = startingRow
Dim catcode R=s String
For Each Spanelement In Spanelements
If Spanelement.classHame = "textAlignlLeft™ Then
catcode = Spanelement.innerText
If Not In5tr(l, catcode, "-", vbTextCompare) > 0 And _
IsNumeric (Mid(catcode, 1, 3)) = True Then
Sheets ("Sheetl™) .Cells(r, 4).Value = catcode
End If
End If
If Mot Sheets("Sheetl™).Cells(r, 4).Value = "" Then
r=r+1
End If
He=xt

This code snippet is pretty straightforward. It’s similar to the other
code items listed above, with little variation. There’s nothing really
new with this code.

Downloading the Category Description

'the following code will download the category description
r = startingBow
Dim catdesc &As String

For Each Spanelement In Spanelements

If Spanelement.className = "texthlignLeft™ Then
catdesc = Spanelement.innerText
If IsMumeric(Mid(catdese, 1, 1)) = False Then

Sheets ("Sheetl™) .Cell=(r, 5).Valus = catdesc

End If
End If

Again, this is similar to the other code that’s been written thus far
for the other data items. The only difference is that the code would
return the column headings for all the items, so the following code
was written to exclude these from being entered on sheet1:

If Not Sheets ("Sheetl™).Cell=s(r, 5).Value = "" Then
If Mot Sheets("Sheetl"™).Cells(r, 5).Valus = "Parcel #" Then
If Mot Sheets ("Sheetl™).Cells(r, 5).Valus = "Private Sale #" Then
If Not Sheets ("Sheetl™).Cells(r, 5).Value = "Cwner Name" Then
If Not Sheets ("Sheetl™) .Cells(r, 5).Value = "Cat. Code" Then
If Not Sheets ("Sheetl"™).Cells(r, 5).Value = "Cat. Desc." Then
r=r + 1
End If
End If
End If
End If
End If
End If

Hext

Downloading the Status

'the following code will download the status

r = ztartingRow
Dim =tatus A= 5String
Set HTMLdoc = a.document
Ser TDelements = HIMLdoc.getElementsByTagName ("ID"™)

For Each TDelement In TDelements

If Thelement.className = "divEBorderBottom" And
ITDelement.Align = "center™ Then

status = TDelement.innerText

If IsHumeric(Mid(=statu=s, 2, 1)) = False Then

Sheetsz ("Sheetl™) .5elect
Sheets ("Sheetl™) .Cells(r, &) .Value = status
r=r+ 1
End If
End If
Hext

'the following code will download the balance due
Dim bkalancedue As String

S5et HIMLdoc = a.document
Set TDelements = HIMLdoc.getElementsByTagName ("TD™)

r = startingRow
For Each TDelement In TDelements
If Thelement.className = "divBorderBottom" And
TDelement.Align = "center” Then
balancedue = TDelement.innerText
If Left(balancedue, 1) = Chr(36) Then
Sheets ("Sheetl™) .S5elect
Sheets ("Sheetl™) .Cells(r, 7).Value = balancedue
r=r + 1
End If
End If
Hext

This code is again, pretty similar to what’s been written so far, so
nothing really new here. The only difference is that it excludes all
inner text items in “td” tags that are numeric. This is because the
code was including some non-desirable text that wasn’t related to
status. This eliminates those items.

Downloading the Balance Due

The following code downloads the outstanding taxes that are due.
This was pretty simple to write, using the code that | had written so
far, and doing some minor changes. By searching for inner text
items that began with a dollar sign (S), | was able to isolate the
desired text. See code below.

Downloading the First Delinquent Year

'the following code will download the first delinguent year

Dim deling As Scring

Set HTMLdoc a.document
Set TDelement= = HTMLdoc.getElementsByTagName ("TD")

r = startingBRow

For Each TDelement In TDelements

If TDelement.className = "divBorderBottom" And
TDelement .Align = "center”™ Then

deling = TDelement.innerText

If Mot Left(deling, 1) = Chr(36) Then

If IzNumeric (Mid(deling, 2, 1))} = True Then

Eheetsz ("Sheetl™) .S5elect
Sheetsz ("Sheetl™) .Cell=s(r, £2).Value = deling
r=r +1
End If
End If
End If
Hext

Unfortunately, the way the html code was written, the first
delinquent year and tax year sale (two separate data fields) could
not be downloaded separately from the website. As these items
were found within “td” tags, class names of “divBorderBottom”, and
align of “center”, they had to be downloaded concurrently and
stored on sheet 1 in column 8.

In fact, the balance due item also had the same html encoding but
because they could be distinguished by the S sign (which is
represented as Chr(36) in ASCII as noted above in the coding) they
could be isolated or in this case, eliminated from the query results
for the first delinquent tax year and tax year sale.

Because the resulting download to sheetl in column 8 had the first
delinquent tax year and the tax year sale in the subsequent row, the
following code was written to move the value in every other cell
over to column 9, adjacent to the cell in column 8 that the first
delinquent tax year value was recorded in:

'the following code moves the tax year sale
r = ((page - 1) = 200) + 2
Cells(r, o - 1l).3elect

Do Until ActiveCell.Offset (3, 0) = "7
AotiveCell . Qffzetc(l, 0).range("A1l").5elect
Application.CutCopyHMode = False
Selection.Cut
AoctiveCell . Offzetc (-1, 1) .range("Al"™).S5elect
ActiveSheet.Paste
AoctiveCell . Offsec (2, -1).3elect

Loop

Notice that this is the section of the code where the variable “page”
is used to determine the row (variable r) that the code should start
on (see first line of code).

This works for moving every cell, but because the code terminates
when the cell three rows down is blank, it terminates before moving
the very last tax year sale entry. The following code was written to
account for this discrepancy:

'the following code fixes the last entry

'of the delingquent tax year

BotiveCell . Offzsec(l, 0) .range("Al"™) .Select
Application.CutCopyMode = False
Selection.Cut
AotiveCell.Offsetc (-1, 1) .range("Al™) .Select
BetiveSheet.Paste

There is still one remaining problem, and that is, there are now
blanks in column 8, where the tax year sale values used to be.
Because these values had been moved over to the adjacent cell in
column 9, the same rows in column 8 and column 9 are blank. The
following code was written to copy and paste the values in column 8
and 9 so that there were no blank cells and that the values in these
columns corresponded to the data in columns 1 through 7:

'the following code removes the empty spaces in
'the delinguent tax year and tax year =sale columns
Dim z A= Integer
z =0
For z =0 To 1
Cell=(r, o — 1l).5elect
BeotiveCell .Off=zec (0, =z) .S5elect
Do Until Selection.End(x1Down) .Value = "7
Selection.End (x1Down) .Select
Selection.Cuat
Selection.End(x1Up) .5elect
LAetivelCell .Offset (1, 0).range ("A1"™) .Select
AotiveSheet.Paste
Loop
Hext

Notice the use of variables, r, ¢, and z. The variable z was used to
create a loop that would run the code for column 8 and then for
column 9. Variables r and c were used because these values had
already been determined previously in the code to determine the
starting row on which each web query page was to be downloaded.
By using these variables, and there corresponding values, the code
will execute on the items that had just been downloaded to the
sheetl worksheet and needed to be separated out into column 9

and have the empty spaces removed.

Navigate to Next Query Page

After all the data on the current query page is downloaded, the
following code instructs the interpreter to move on to the next
query page. Notice the “next page” hyperlink on the web page
appears as follows:

Current data displayed: All parcels with Status "TAX SALE CERTIFIED "
523 records found totaling $4,181,606.12

First records displayed up to 200. Select page numbers below to see more.

1 2 3 nextpage >>
|Parcel # |Private Sale

Cat.
Code

1 |22-04-303-035-0000

Owner Name

Cat. Desc. Status Balance Dug

4500 SOUTH PROIECT LLC

TAX SALE

CERTIFIED $7,654.33

202 GEMNERAL PROPERTY

The code instructs the interpreter to continue to the next page by
selected the “next page” hyperlink. It then adds one value to the
page and resets c (a variable used to determine what column the
interpreter should begin saving data to on sheetl) to 1.

'mavigate to next page:

Do

a.followlLinkByText ("next page™)
a.waitForLoad

c=1

page = page + 1

FoTo Start:

Loop

End Sub

I’'m not so sure that the Do Loop is necessary here, as the GoTo
instruction moves to the Start: location at the top of the code. This
Do Loop is really just a remnant of a loop that wasn’t effective at
terminating the sub-procedure. With the GoTo command, the
interpreter is sent to the Start: location. Code within the item #
download section (see above) terminates the sub-procedure.

startingRow Function

Function startingRow() A= Integer
'Dim r A= Integer

If ¢ = 0 Then

c =1

End If

'to determine the =starting row
range ("AL1"™) . Select

Cell=s (2, c).Select
Selection.End (x1Down) . Select
Selection.End (x1Down) . Select
Selection.End (x1Up) . Select
BotiveCell .Offset (1, 0).Select
startingRow = Actiwvelell.Row
c=c+ 1

'Debug. Print r©, c

End Function

The code above is for the startingRow function that evaluates the
sheetl workbook to determine the very last row and column that
data had been entered on. It then adds one value to each and
stores the row as “starting row” and the column in variable “c”, a
module level variable. As previously discussed, the “starting row”
function is called each time a new section of the code is run for
downloading a new data item from the county treasurer’s website.

obtainAddress Sub-Procedure

As previously mentioned, this sub-procedure accesses the Salt Lake
County Assessor’'s website and performs a search for property
addresses and coordinates using parcel numbers. It then
downloads the results into the sheet1 workbook.

Declaring Variables

Sub obtainfddress|()

Dim a A= New agent

Dim getElementbyID A= Object
Dim address As String

Dim r A= Integer

Dim coordinates A= String
Dim trimlength As Integer
Dim commaloc b= Integer
Dim longitude As String
Dim lattitude As String
Dim ampLoc As Integer

Dim =streetlum As String
Dim direction As String
Dim =streetName As String
Dim =streetIype As String
Dim lastRow A= Integer

The first section of code declares a lot of variables used throughout
the sub-procedure. The first two variables are similar in name and
function to those declared in the webQuery sub-procedure.

Formatting and Begin For Loop

Sheets ("sheetl™) .5elect

Sheets ("sheetl™) .range ("jl") .Value = "Street Number™
Sheets ("sheetl™) .range ("k1") .Value = "Direction”
Sheets ("sheetl™) .range ("11") .Value "Street Name"™
Sheets ("sheetl™) .range ("ml"™) .Value "Street Type"™
Sheets ("sheetl™) .range ("nl") .Value = "Lattitude”
Sheets ("sheetl™) .range ("ol™) .Value = "Longitude™

Sheets ("sheetl™) .range ("al™) .S5elect
lastRow = Selection.End(xl1lDown) .Row

r = £

For r = 2 To lastRow

This section of code creates column headings for the address and
coordinates. In addition, it determines the last row of the existing
data (downloaded by the webQuery sub-procedure in columns 1 to
9) and creates a For Loop beginning at row 2 (the row directly below
the column headings) and ending with the last row of data. In this
way, the interpreter will search for address and coordinate data for
each row of data.

Duplicate Parcel Numbers

'to check to see if there are duplicate addresses:

If Sheets("sheetl"™).Cells(r, 2).Value = Sheets("sheetl"™).Cells(r - 1, 2).Value Then
Sheets ("sheetl"™) .Cells(r, 10).Value = Sheets("sheetl").Cells(r - 1, 10).Value
Sheets ("sheetl"™) .Cells(r, 11).Valus = Sheets("sheetl").Cells(r - 1, 11).Value
Sheets ("sheetl™) .Cells(r, 12).Value = Sheets("sheetl™) .Cells(r - 1, 12).Value
Sheets("sheetl™) .Cells(r, 13).Value = Sheets("sheetl").Cells(r - 1, 13).Value
Sheets ("sheetl"™) .Cells(r, 14).Value = Sheets("sheetl").Cells(r - 1, 14).Value
Sheets ("sheetl"™) .Cells(r, 15).Value = Sheets("sheetl™).Cells(r - 1, 15).Value
r=r + 1

End If

The address and coordinate search will be conducted using parcel
numbers. The county treasurer’s website maintains database
entries for each tax category that is past due, so the same property
can appear on multiple lines. Rather than performing a query on a
parcel number for which the address and coordinates has already
been gathered for, code was written to check if the current row it is

evaluating has a duplicate entry and to copy that information from
the duplicate entry into the current row. This code was written to
avoid performing the same parcel query over and over again.

Accessing the County Assessor’s Website
The following code was written to access the County Assessor’s
website:

.wvisible = False
.openpage "http://assessor.slco.org/cfml/guery/query?.cfm", True
.waitForLoad
.document.getElementbyID ("parcelid”) .Value = _
Sheets ("sheetl"™) .Cells(r, 2).Value
.followLinkByText ("Submit Search™)
.document.Forms (0) . submit
a.waitForLoad

a
a
a
a

]

Because the time involved with this query is so extensive, | selected
not to show internet explorer. This code is pretty straightforward
and uses the class module “agent” prepared by Professor Allen.

This is what the website looks like. The parcel number search box is
near the bottom of the site.

OWNER NAME SEARGCH

Enter at laast the first three lstters, ex. "ZEN", of the owner name, not the businass
name, unless both are the same. If searching by first and last name, Enter the last name,
followed by 2 comma, 2nd then the first name. i.e. Doe, John

ADDRESS SEARGH 2345 S MaiM DR 23455 432 E

[FronTace Numeer | [DiRECTION | [STREET NAME OR MuMBER | [TvPE OR DIRECTION]

Enter at least the Frontage number or street name to bagin searching. This
will return all records with a like value. Also, you could enter an owner
nama and then, sither the numbar, direction, name, or type. You can alse
search by just the Frontage number or Street name.

Frontage Dir. SteetName or Type o
MNumber Number Direction

PARGEL NUMBER SEARCH

Please anter tha first 10 digits. Optionally followed by the last four "Encumberance”
numbers. If you want to search for every parcel number on a certain block, enter anly the
first seven(7) digits of tha parcal number. The first four digits are the Area and Section

numbers, the next 2 are the block numbers. Examale ‘0933276

Submit Search][Clear Entries | When viewing Parcel Detisls: View classic page || View printabis version ||

Extracting Address Information
Once the parcel query is submitted the next website looks like this:

Parcel Value Summary

Click here for Parcel Characteristics Search Again? Frinter Version Previous Next
Parcel 22.04-303-035-0000 Value History
g;;m 4;33055?::(—;‘ ::;:FGC; thc Record LandValue BuildingValue Market Value Tax Rate
ress
Total Acreage 0oy 2011 §64.900 $151500 § 216,400 0137100
Apove Ground sqft 2010 1 § 66,900 §156.200 $223,100 0131180
Property Type 116 - CONDO 2009 1 § 66,300 $ 156,200 §223,100 0123040
I i 2008 1 $ 53,000 $0 $93,000 0104440
Mo + LAND SHOW ALL 2007 1 §93,000 s0 $93,000 0104320
Details + RESIDENCE/CONDO COLLAFSE ALL _
+ COMMERCIAL - Man T
+ DETACHED STRUCTURE ! S
Bg 2
o onwood &
2 Eas008 ark z
m iy 2
4 o
8
g
) m
Claleyyle * E

40 672735260,-111 853920660
Previous Next Results list

This page shows the assessor's CAMA data, as it was, on May 22, 2011,

The address information is located in the upper left and the
coordinates appear directly below the Google Maps insert.

a.updateHTML 'reads the current html and puts it in the text property
a.position = 1

"the following extracts the address of the parcel and saves each element
a.moveTo ("Cwner™)

a.moveTo "style="

address = a.getText ("<")

Debug.Print address

The first two lines of code above are copied from the “agent” file
prepared by Professor Allen. The next lines of code navigate to the
html source code with the text of “Owner” and then within that text
section moves to the “style” tag and retrieves the text from the
beginning of that tag to the symbol “<”.

No Address Found

If InStr(l, address, "height:", vbITextCompare) > 0 Then
Sheets ("sheetl™) .Cells(r, 10).Valus = "H/L"
Sheets ("sheetl™) .Cells(r, 11).Valus = "N/L"
Sheetcs ("sheetl™) .Cells(r, 12).Valus = "N/L"
Sheets ("sheetl™) .Cell=(r, 13).Valus = "N/L"
Sheets ("sheetl") .Cell=(r, 14).Valus = "N/L"
Sheets ("sheetl") .Cell=(r, 15).Valus = "N/L"
GoTo Ending:
End If

Some parcel numbers do not have addresses associated with them.
The code above enters N/A into each the corresponding cell for the
address columns.

It then instructs the interpreter to go to the “Ending:” location of
the sub-procedure which is near the bottom of the code, so that it
avoids the code dealing with text manipulation, which I'll discuss
next.

Address Text Manipulation
The address text that is returned from the html source code looks
like this:

"float:

right;">904 E TENDOY CT&
nbsp;

Code was written to find and save only the relevant portions of
code, and saves each element into a different column. After
processing this text, the result is:

Street Number: 904
Direction: E

Street Name: TENDQOY
Street Type: CT

The code that accomplishes this text manipulation is below:

trimLength = InStr(l, address, "»", wvbTextCompare)
address = Right (address, Len(address) - trimLength)
ampLoc = InStr(l, address, "&", vbTextCompare)
streetlum = Left (address, amploc — 1)

Sheets ("sheetl™) .Cells(xr, 10).Value = streetMNum
direction = Mid(address, ampLoc + 12, 1)

Sheets ("sheetl™) .Cells(xr, 11).Value = direction
address = Right (address, Len|address) - (ampLoc + 24))
anmpLoc = InStr(l, addresszs, "&", vbkTextCompare)
streetName = Left (address, ampLoc — 1)

Sheets ("sheetl™) .Cells(r, 12).Value = streetMame

address = Right (address, Len(address) - (ampLoc + 11))
address = Replace (address, " :"™, """, 1, , vbTextCompare)
streetType = Trim(address)

Sheets ("sheetl™) .Cells(xr, 13).Value = streetlype

Extracting Coordinate Information

The following code moves to the text where google maps is used
and to the src= element. It returns the text from the end of this
element title to the text “". This text is in the format:

"http://maps.google.com/staticmap?center=40.672785260,-
111.853920660&zoom=13&size=160x120&maptype
=roadmap&markers=40.672785260,-
111.853920660,blues&key=ABQIAAAAPCYJ6hssEfoW91ymijviIX
hRYOFoJhxSZRZ7WSbHGx8xbol4G5xRcrRj2mSo2NzD-
OpLj3cYhpbQdiA">

40.672785260,-111.853920660"margin:
method="get"

Opx;" id="seek1"
name="seek1"
action="http://search.slco.org/search?">

The following code manipulates the text in order to extract the
relevant information:

'the following extracts the coordinates of the parcel and saves it
a.moveTo "href=""http://maps"

a.moveTo "src="

coordinates = a.getlext ("")

trimLength = InStr(l, coordinates, "
", vbIextCompare)

coordinates = Right (coordinates, Len(coordinates) - trimlLength - 4)
commaloc = InStr(l, coordinates, ",", vbTextCompare)

longitude = Left (coordinates, commaloc — 1)

lattitude = Right (coordinates, Len(coordinates) - commalLoc)

Sheets ("sheetl™) .Cells(r, 14).Value = lattitude
Sheets("sheetl™) .Cells(r, 15).Value = longitude

Ending:

Hext

End Sub

The result is:

Lattitude: 40.672785260
Longitude: -111.853920660

This information is then stored in sheetl. The location “Ending:” is
referenced earlier in the sub-procedure and is navigated to in
instances where a query has already been run for a duplicate entry
(see above for where it is referenced). The sub-procedure is then
ended.

Learning and Conceptual Difficulties

The most challenging aspect of this project was trying to find the
appropriate code for extracting what | needed from the websites in
guestion. Because the examples shared in class were in many ways
not similar to the websites | was using, it was difficult to determine
how to access the County Treasurer’s website. As luck would have
it, | figured it out, but only after tens of hours spent doing so. Once

that was figured out, the rest of the assignment was not as
challenging.

Had | more time to spend on the project, | would have added ribbon
functionality, downloaded additional data, and formatted the file to
make it more attractive. | also would have gone through my code to
see how | could make it more efficient. | think spending fifty hours
on a project should be enough, but these are just some thoughts for
ways it can be improved.

As | side note, after spending considerable time trying to figure out
how to access the County Treasurer’s website, | almost gave up
entirely and was about to change my final project (or not do it all
and take a C in the class). It was a miracle that | figured it out and
I'm glad | did. Now | have something to show to my friends and
family for all the hard work!

