

Corporate Card Holder Receipt Collection
Threshold

Ryan Rawlings
MBA 614 Final Project

Executive Summary
My VBA project is the direct result of a consulting project I performed for Adobe as part of Tom Foster’s
quality management class. While there were other team members assisting with the analysis and the
formatting of the project, the VBA code in the project is entirely my own.

The project for Adobe involved their policy for turning in receipts for transactions on company credit
cards. In a nutshell, this project was designed to balance the cost and hassle of scanning and processing
a receipt with the risk of making errors in sales tax accrual. These errors could take the form of either
over or under accruing taxes. Over accruals leads to too much tax being paid by Adobe, while under
accruals can lead to penalties and extra interest should a state tax auditor discover it. Adobe does not
wish to avoid any taxes, but understanding that errors will inevitably occur, they wanted to know if
there was some sort of threshold below which the risk for over-accruals or fines was less than the cost
of processing a receipt.

We received 2 years’ worth of transaction data from Adobe for their corporate card holders’
transactions. Because this is sensitive data for Adobe, I have elected not to submit this data to the blog.
My solution required two major operations. The first was to determine how many scans were necessary
at any given collection threshold. I was told that employees are required to turn in receipts monthly, so I
assumed that they would not be scanning any more frequently than that. The transPerAcct() macro
generates a unique list of active card holders from the data, then counts how many transactions each
employee had over the threshold. It then parses the date, and categorizes the purchases into months.
Finally, it counts the number of months in which an employee had any transaction over the threshold.

The second major operation was to determine the actual tax liability and the estimated risk of mis-
accrual. To accomplish this, the code adds a column for the tax charge, multiplying the transaction
amount with the state tax rate. Some of the data sheets we were given did not contain any reference to
the tax rate—in those cases the code pulls the average US sales tax rate. That total tax liability is the
modified by certain values on the “Main” tab—The % of transactions with a trusted vendor, and the % of
taxes paid at Point of Sale. Both of these are measures to estimate the risk of over-accrual.

The cost of gathering receipts is combined with several variables on the “Main” tab to generate a total
cost of processing at any given collection threshold. The total tax burden is modified by an assumed
error rate and the calculated penalty is and added to the calculated over-accrual. The point at which the
sum of the tax liability and the receipt processing cost is the lowest is the appropriate receipt collection
threshold. Because the receipt holders and the accounting department generally operate with different
thresholds, I used 2 data tables to populate 2 graphs showing how the numbers changed with the
threshold for any given set of assumptions.

In order to provide some further intuition into the data, the import process also generates a histogram
of the transactions by amount. This allows someone analyzing the data another angle into how to
manage the balance between high dollar/ low volume transactions and low dollar/high volume
transactions.

Implementation Documentation

GetData
There are 3 columns that are necessary to complete the calculation of the threshold limit. Those are the
cardholder name, the transaction date and the transaction amount. This procedure also looks for a
transaction state column, but because the code has a workaround for a missing transaction state, this
column is not required.

Looping through files saved in the \data\ folder, the procedure searches for the required column name
(which has been stored in an array, so that I can loop through the column names as well). If the column
name is not found the program generates an error telling the user which column name was not found so
that they can go and investigate further. Within the loop for each file, there is a separate loop that
selects the column name, then uses the xlDown function to select the rest of the column. The data is
then copied and pasted into the analysis workbook. At the end of the loop, the program records the row
number, then begins pasting data from the next file on the next row.

Outside of this loop, I have the program check for a column containing the state of the transaction. I left
this out of the loop because if this field isn’t found, it does not need to generate an error. If the field is
found, it is imported just like the other three columns.

TransPerAcct
This procedure begins looking for the required columns, and assigning the column numbers of each to
different variables. It also inserts a new column next to the transaction dates to hold the data for the
parsed month. It then begins checking the data for blank, non-numeric, or less than -$1,000,000 values
in the transaction amount column, and deletes the applicable rows. Blank values can throw off the
calculations, and non-numeric values can cause errors. Each month of data contains a few summary
lines with very large negative numbers. Some negative numbers are allowable, as a reversed transaction
does affect sales tax, but these large numbers greatly skew the calculations and need to be removed.
Also, this process filters out the column headings that were brought over during the GetData procedure.
This loop assumes that there will not be very many of these values, and exits the loop after it has
deleted 100 rows.

The procedure then copies the list of cardholders, pastes it over into the “ScanCounts” sheet and
removes any duplicates from the list. It then adds a column containing a “COUNTIFS” function counting
the transactions that A. belong to that cardholder, and B. were over the collection threshold on the
“Main” worksheet. The next column uses a “COUNTIF” function to determine the percentage of that
cardholder’s transactions that were over the threshold.
The next task was to sort the transactions into months. The procedure labels the columns using the
MonthName function in a loop. Because the date formats were not consistent, (ie, January could be 01
or 1), it wasn’t possible to use MonthName directly on the transaction date. I used a Case statement to
have MonthName correctly identify the month regardless of the date format. The month names are
placed into the already-created blank column and are tabulated by “COUNTIFS” statements on the
“ScanCounts” sheet.

CalculateFine
This is the program that the ribbon control is pointing to. The first thing this procedure does is check for
a field in the “RawData” sheets called “Est Taxes”. If it finds one, it returns an error saying that the data

have already been imported. After this check, it runs the GetData and TransPerAcct procedures
described above.

The procedure next checks to see if the importer successfully brought in the state of the transaction. If it
did, the procedure creates two new columns, and uses a “VLOOKUP” to determine the correct tax rate
and from there calculate the total tax liability. If the state column is not successfully found, I looped
across the top of the columns to find the first empty column, then uses the average US tax rate on the
“State Tax Rates” sheet to calculate the tax liability.

Regardless of whether the state tax rates are present or not, the first of these two columns calculates
the total tax liability. The second modifies that liability based on parameters entered on the “Main”
page. For each column, after the values have been filled to the end of the data, each range is given a
name. (“Tax” and “TaxAdj” respectively). Once these ranges are named, the macro runs a histogram on
the transaction data, and returns the user to the “Main” sheet.

Histogram
This is a simple procedure that takes the numbers from the data table, then pastes them into “no-man’s-
land” on the “RawData” tab and names the range “HistBin”. This is not an elegant solution, but I got
errors when having the data on one sheet and the bin values in another, and this way worked. The
Histogram is also very picky about having only numeric values in its data. To scrub the data, I created
another column, and requested that non-numeric values be given a value of -1. This ensured both that
the histogram wouldn’t have problems with them, and also that those values wouldn’t show up in the
histogram data itself (as the bin values started at 0).

Learning and Difficulties
There were several points where I got stuck putting this together. One of the more interesting problms
had to do with the step in the “TransPerAcct” sub where I am deleting rows out of the workbook. I had
initially tried to make it work with a For Each loop, but received an error on the loop after the first
deletion. After trying several ways around, I eventually went back to the familiar For Next loop, but even
that caused me difficulties. As I tested that portion of my code, it was deleting every other line, but if
there were 2 together needing deletion, it would skip the second. Setting up a watch here was crucial to
understand that because I had used my counter variable as my row variable as well, when a row was
deleted, the counter needed to be set back one as well.

I have also had problems throughout the semester on any project that required us to manipulate
workbooks as objects. I had the same problem again during this project, but I feel as though I finally
understand how to make it work. Getting a better understanding of how the Dir function works, what it
returns, and why helped greatly in understanding how to make the whole thing work together.
Other difficulties included being able to having the “Find” method return a Boolean value. This ended up
being much less straightforward that I had assumed it would be. Eventually I was able to make it work
by using the COUNTIF function, and testing whether it was > 0, but it seems like a very inelegant
solution, and I expect there is a better one out there. Because the files that we were pulling in were not
standard, I also was able to become much more familiar with named ranges, and I can happily report
that I have been converted. Having those ranges named made the code easier to write, made my
formulas easier to write, and I felt that they made the entire design of the workbook more robust.

I toyed with the idea of putting the parameters into a userform, but decided against it, as these values
are meant to be changed on the fly and analyzed, not “submitted” to some central process. This project
was a lot less ambitious than the one I had previously proposed, but I was able to finally iron out some
stubborn wrinkles in my understanding of how to make things work in VBA.

Appendix 1: Sub GetData()
 Dim ColNames(3) As String
 ColNames(0) = "FIN.Transaction Date"
 ColNames(1) = "ACC.Account Name"
 ColNames(2) = "FIN.Transaction Amount"
 ColNames(3) = "ACC.State / Province"
Dim strFile As String
Dim strPath As String
Dim i As Integer
Dim x As Integer
Row = 1
 strPath = ThisWorkbook.Path & "\Data\"
 strFile = Dir(strPath)
 While strFile <> ""
 Application.Workbooks.Open (strPath & strFile)
 For x = 0 To 2
 Application.Workbooks(strFile).Activate
 If Application.CountIf(Range("A1:BB2"), ColNames(x)) = 0 Then
 MsgBox ("Cannot find column " & ColNames(x) & ".")
 Exit Sub
 Else
 Cells.Find(ColNames(x)).Select
 Range(ActiveCell, ActiveCell.End(xlDown)).Select
 Selection.Copy
 ThisWorkbook.Activate
 Sheets("RawData").Cells(Row, x + 1).Activate
 ActiveSheet.Paste
 End If
 Next
 Application.Workbooks(strFile).Activate
 If Application.CountIf(Range("A1:BB2"), ColNames(x)) = 0 Then
 Else
 Cells.Find(ColNames(x)).Select
 Range(ActiveCell, ActiveCell.End(xlDown)).Select
 Selection.Copy
 ThisWorkbook.Activate
 Sheets("RawData").Cells(Row, x + 1).Activate
 ActiveSheet.Paste
 End If
 ThisWorkbook.Activate
 Selection.End(xlDown).Select
 Row = Selection.Row + 1
 Application.Workbooks(strFile).Activate
 Application.CutCopyMode = False
 Application.Workbooks(strFile).Close (False)
 strFile = Dir
 Wend
End Sub

Appendix 2: TransPerAcct()
Worksheets("ScanCounts").UsedRange.ClearContents
Dim LastRow As Integer
Dim AccCol As Integer
Dim AmtCol As Integer
Dim MonCol As Integer

Worksheets("RawData").Activate

 Range("a1:bb3").Find("FIN.Transaction Date").Select
 ActiveCell.EntireColumn.Offset(0, 1).Insert
 MonCol = ActiveCell.Column + 1
 AccCol = Range("A1:BB2").Find("ACC.Account Name").Column
 AmtCol = Range("A1:BB2").Find("FIN.Transaction Amount").Column

 Cells(1, MonCol).Value = "Month"
 Columns(AmtCol).Name = "TransAmt"

 ' Dim TransAmtx As Range
 ' Set TransAmtx = Range("TransAmt")
 ' Dim Amtx As Range
 Dim counter As Long
 Dim z As Integer

 ' For Each Amtx In TransAmtx.Cells
 For counter = 2 To Row
 With Sheets("RawData").Cells(counter, AmtCol)
 If (IsNumeric(.Value) = False Or .Value = "" Or .Value < -1000000) Then
 .EntireRow.Delete
 counter = counter - 1
 z = z + 1
 End If
 End With
 If z > 100 Then Exit For
Next counter

 Columns(AccCol).Select
 Selection.Copy
 Worksheets("ScanCounts").Activate
 Range("A1").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
 If Range("A1").Value = "" Then ActiveCell.EntireRow.Delete
 ActiveSheet.Range("A:A").RemoveDuplicates Columns:=1, Header:= _
 xlYes
 'Fills the # of transactions over the threshold
 Range("B1").Select
 ActiveCell.FormulaR1C1 = "Transactions Per Acct"

 Range("B2").Select
 ActiveCell.FormulaR1C1 = "=COUNTIFS('RawData'!C[" & AccCol - ActiveCell.Column & "],RC[-
1],'RawData'!C[" & _
 AmtCol - ActiveCell.Column & "],"">"" & ThresholdCol)"
 Range("B2").Select
 LastRow = Cells(Rows.Count, "A").End(xlUp).Row
 Selection.AutoFill Destination:=Range("B2:B" & LastRow)
 'Fills the % of transactions over the threshold
 Range("C1").Select
 ActiveCell.FormulaR1C1 = "% Over Threshold"
 Range("C2").Activate
 ActiveCell.FormulaR1C1 = "=RC[-1]/CountIf('RawData'!C[" & AccCol - ActiveCell.Column & "],RC[-2])"
 LastRow = Cells(Rows.Count, "A").End(xlUp).Row
 Selection.AutoFill Destination:=Range("C2:C" & LastRow)
 'Fills the Months across the top
 Range("D1").Select
 Dim x As Integer
 For x = 1 To 12
 ActiveCell.Value = MonthName(x)
 ActiveCell.Offset(0, 1).Activate
 Next
 'Inserts Month Names
 Dim TransMonth As String
 x = 1
 Dim blanks As Integer
 blanks = 0
 Do Until blanks = 100
 If Range("'RawData'!A" & x).Value = "" Then
 blanks = blanks + 1
 x = x + 1
 Else
 Select Case Left(Range("'RawData'!A" & x).Value, 2)
 Case "01", "1/"
 TransMonth = MonthName(1)
 Case "02", "2/"
 TransMonth = MonthName(2)
 Case "03", "3/"
 TransMonth = MonthName(3)
 Case "04", "4/"
 TransMonth = MonthName(4)
 Case "05", "5/"
 TransMonth = MonthName(5)
 Case "06", "6/"
 TransMonth = MonthName(6)
 Case "07", "7/"
 TransMonth = MonthName(7)
 Case "08", "8/"
 TransMonth = MonthName(8)

 Case "09", "9/"
 TransMonth = MonthName(9)
 Case "10"
 TransMonth = MonthName(10)
 Case "11"
 TransMonth = MonthName(11)
 Case "12"
 TransMonth = MonthName(12)
 End Select
 Worksheets("RawData").Cells(x, MonCol).Value = TransMonth
 x = x + 1
 End If
 Loop
 'Fills Transactions over threshold by month
 For x = 1 To 12
 Cells(2, 3 + x).Select
 ActiveCell.FormulaR1C1 = "=COUNTIFS('RawData'!C[" & AccCol - ActiveCell.Column & "],RC[" & -2 - x
& "]," & _
 "'RawData'!C[" & AmtCol - ActiveCell.Column & "],"">"" & ThresholdCol," & _
 "'RawData'!C[" & MonCol - ActiveCell.Column & "],R1C" & x + 3 & ")"
 Next
 Range("D2:O2").Select
 LastRow = Cells(Rows.Count, "A").End(xlUp).Row
 Selection.AutoFill Destination:=Range("D2:O" & LastRow)
 'Fills "Scans/Year Column
 Range("P1").Value = "Scans/yr"
 Range("P2").Select
 ActiveCell.FormulaR1C1 = "=Countif(RC[-12]:RC[-1],"">0"")"
 LastRow = Cells(Rows.Count, "A").End(xlUp).Row
 Selection.AutoFill Destination:=Range("P2:P" & LastRow)

End Sub

Appendix 3: CalculateFine()
If Application.CountIf(Sheets("RawData").Range("A1:BB2"), "Est Taxes") > 0 Then ' Check to see if the Est
Taxes field already exists
 MsgBox ("Data already imported.")
 Exit Sub
End If
Application.ScreenUpdating = False
Sheets("RawData").Activate
GetData
transPerAcct
Sheets("RawData").Select
If Application.CountIf(Sheets("RawData").Range("A1:BB2"), "ACC.State / Province") = 0 Then ' Check to
see if we know the state
 Range("A1").Activate ' if no, then insert the tax fields to the left
and use the average US tax rate.
 Do Until ActiveCell.Value = "" And ActiveCell.Offset(1, 0).Value = ""
 ActiveCell.Offset(0, 1).Activate
 Loop
 ActiveCell.Value = "Est Taxes"
 ActiveCell.Offset(0, 1).Value = "Adjusted Tax"
 ActiveCell.Offset(1, 0).Activate
 r = ActiveCell.Row
 c = ActiveCell.Column

 TranCol = Cells.Find("FIN.Transaction Amount").Column
 ActiveCell.NumberFormat = "General"
 ActiveCell.FormulaR1C1 = "=IFERROR(RC" & TranCol & "*AvgTaxRate,0)"
 ActiveCell.Cells.Replace What:="=", Replacement:="="
Else
 Cells.Find("ACC.State / Province").Select
 ActiveCell.EntireColumn.Offset(0, 1).Insert
 ActiveCell.EntireColumn.Offset(0, 1).Insert
 ActiveCell.Offset(0, 1).Value = "Est Taxes"
 ActiveCell.Offset(0, 2).Value = "Adjusted Tax"

 ActiveCell.Offset(1, 1).Activate
 r = ActiveCell.Row
 c = ActiveCell.Column

 TranCol = Cells.Find("FIN.Transaction Amount").Column
 StateCol = Cells.Find("ACC.State / Province").Column
 ActiveCell.NumberFormat = "General"
 ActiveCell.FormulaR1C1 = "=IFERROR(RC" & TranCol & "*(VLOOKUP(RC" & StateCol & ",'State Tax
Rates'!A:B,2,FALSE)),0)"
 ActiveCell.Cells.Replace What:="=", Replacement:="="
End If

Dim LastRow

LastRow = Cells(Rows.Count, c - 1).End(xlUp).Row
ActiveCell.AutoFill Destination:=Range(Cells(r, c), Cells(LastRow, c))
Range(Cells(r, c), Cells(LastRow, c)).Name = "Tax"

Range(Cells(r, c + 1), Cells(r, c + 1)).Select
ActiveCell.NumberFormat = "General"
ActiveCell.FormulaR1C1 = "=IFERROR(IF(RC" & TranCol & "<ThresholdResearch,RC[-
1]*'Main'!R15C2*'Main'!R14C2,0),0)"

ActiveCell.AutoFill Destination:=Range(Cells(r, c + 1), Cells(LastRow, c + 1))
Range(Cells(r, c + 1), Cells(LastRow, c + 1)).Name = "TaxAdj"

Histogram
Sheets("Main").Select
Range("A1").Activate
Application.ScreenUpdating = True

End Sub

Appendix 4: Histogram()
 Sheets("Main").Select
 Range("A26:A51").Select
 Selection.Copy
 Sheets("RawData").Select
 Range("CC1").Activate
 ActiveSheet.Paste
 Selection.Name = "HistBin"
 Cells(1, TranCol).Activate
 ActiveCell.EntireColumn.Offset(0, 1).Insert
 Cells(1, TranCol + 1).Select
 ActiveCell.FormulaR1C1 = "=IF(ISNUMBER(RC[-1]),RC[-1],-1)"
 r = ActiveCell.Row
 c = ActiveCell.Column
 Dim LastRow
 LastRow = Cells(Rows.Count, c - 1).End(xlUp).Row
 ActiveCell.AutoFill Destination:=Range(Cells(r, c), Cells(LastRow, c))
 Range(Cells(r, c), Cells(LastRow, c)).Name = "HistData"
 Application.Run "ATPVBAEN.XLAM!Histogram", Range("HistData"), "", _
 Range("HistBin"), False, False, True, False

End Sub

