
Final Project
David Parry
December 6, 2012

Executive Summary

I work as an Accounts Payable clerk in the BYU Bookstore. There are many vendors with which the
bookstore is in a credit balance. The AP department keeps track of all the monthly credit balances
throughout the year. At the beginning of each month, one of the tasks is to download the end of month
data from the bookstore’s accounting software. This data is then inputted into a summary file that
shows the vendors and the credit balances throughout the year. This can be a challenge because first,
the vendors with a zero balance during the month do not have a balance in the downloaded data, yet
they exist in the year summary file. Second, some credit balances are new; vendors which previously did
not have a credit balance now do. However, they do not exist in the year summary file. It is a tedious
process to find which vendors exist and add rows of data to the file in the correct location. Previously, it
would take my supervisor many valuable hours to input this data. My project saves her this time and
helps her to avoid this menial task.

My project performs the following key steps:

 Creates a connection to the downloaded text file and imports the data to a new sheet in the file.

 Formats the data for improved readability and enhanced transferability to the summary sheet.

 Transfers the monthly data to the correct month location in the summary file based on the
modified date of the downloaded text file.

 Adds rows of data for the new vendors as needed.

 Moves and saves the month data to the same directory as the year summary file.

At the end of the year, a new file will need to be created for 2013. When the end of month file is
downloaded next year and the program is run, it will generate a new file, clear out the old balances,
create a new folder for the next year, and save the file in that new year folder. Thus, this program will
continue for as long as the bookstore stands.

Implementation Documentation

Note1: It is very fortunate that when the accounting software downloads the end of month data, it
automatically saves the data to the same location on the computer every time—C:\dell\excel.txt. This
way, the program can always read the same file path. However, for the purposes of this demonstration,
I have saved the file in another location—C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final
Project\Copy of credit balance.txt.

***Step 1: Determine what month we are planning to input.
The first step is to determine what date the text file was downloaded. This will help us determine what
month we are inputting. The AP department has a strict policy of not downloading end of month data
until at least the first day of the next month. Thus, the date of the download will always correspond to
the previous month’s data. For example, if the file was downloaded anytime in May, the month of the
data corresponds to April.

In the preceding screenshot, the variable LastModified returns the date and time of the last modification
of the text file. Using the Month(LastModified) function, we can determine the number of the month.
This is stored as the variable MonthNum. To determine the name of the corresponding month number, I
created an array from 1 to 12 called WhatMonth. One challenge is what happens if the file was modified
in January. One minus the month number of January (1 – 1) is equal to zero. The If statement in the code
addresses this challenge. If the file was downloaded in January, then the month number is automatically
assigned as 12 (December) and the year number (defined as the variable YearNum) is the previous year
from the download year. Otherwise, the month is simply the previous month and the year is simply the
same year.

***Step 2: Obtain user’s confirmation.
We don’t want the user to accidentally run the program without previously downloading the file from
the accounting software (which automatically saves the data as a text file as explained in Note1). To
address this, I created a series of message boxes to appear. The first box (on the left) gives the date of
the text file download and asks for confirmation that the user is attempting.

Upon selecting “Yes”, the program will continue to run. If “No” is selected, then another message box
(on the right) will appear, indicating to the user to wait until after the first of the month to run the
program.

These message boxes were created using the following code:

result = MsgBox("The last file was downloaded from VR on " & LastModified & ". Are you trying to input " & MonthName & " "
& YearNum & "?", vbYesNo, "Confirmation")

If result = vbNo Then
MsgBox "Please download after the first of the month."
Exit Sub
End If

I also created a message box that will appear and cause the sub procedure to close if there already exists
a saved file for that specific month. The code for this message box is:

Dim filename As String
filename = ThisWorkbook.Path
If Dir(filename & "\" & MonthName & YearNum & ".xlsm") <> vbNullString Then
MsgBox "Error. This month has already been inputted. Please wait until next month."
Exit Sub
End If

Note2: If you are following the code that appears in Exhibit A, you will notice that the next part of the
code executes according to the year (If it is a new year, a new file will be created). I will address that
challenge forthcoming.

***Step 3: Make a connection to text file.
The next step is to add a new sheet and create a connection in order to import the text file into the
sheet. This is done by the following code:

Sheets.Add

 With ActiveSheet.QueryTables.Add(Connection:= _
 "TEXT;C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\Copy of credit balance.txt", _
 Destination:=Range("A1"))
 .TextFileColumnDataTypes = Array(2, 2, 2, 1)
 .Refresh BackgroundQuery:=False
 End With

 ActiveWorkbook.Connections("Copy of credit balance").Delete

 ActiveSheet.Name = "CB"

The code also deletes the connection after importing the data to ensure that the data does not get
“refreshed” or changed. Then the code changes the name of the sheet to “CB”. The following screenshot
shows the data in the text file and then the data after it has been imported into a spreadsheet in the
workbook.

***Step 4: Format the imported data.
There exist various flaws in the imported data. First, there are additional spaces within each cell that
must be trimmed. Also, if the vendor is longer than a specified length, then parts of the vendor get cut
off and moved to the next row. We need to concatenate that portion of the name and delete the blank
rows. We also need to delete the extra vendor names that exist in column two. Additionally, we need to
sort the data to make it easier to transfer into the year summary sheet. Finally, the heading will be
renamed to reflect the month and year of the data. These types of formatting require relatively simple
code:

Dim FinalRow As Long
Dim Col As Long

FinalRow = Sheets("CB").Cells(Rows.Count, 1).End(xlUp).Row

For Row = 1 To FinalRow

 For Col = 1 To 4
 Cells(Row, Col).Value = Trim(Cells(Row, Col).Value)
 Next

 If Cells(Row, 1).Value = "" And Cells(Row, 2).Value = "" And Cells(Row, 4).Value = "" Then
 Cells(Row - 1, 3).Value = Cells(Row - 1, 3).Value & " " & Cells(Row, 3).Value
 End If
Next

Cells(2, 2).EntireColumn.Delete

For Row = FinalRow To 2 Step -1

If Cells(Row, 1).Value = "" And Cells(Row, 3).Value = "" Then
Cells(Row, 1).EntireRow.Delete
End If

Next

Columns("A:C").EntireColumn.AutoFit

 Range("A2").Select
 Range(Selection, Selection.End(xlToRight)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Sheets("CB").Sort.SortFields.Clear
 Sheets("CB").Sort.SortFields.Add Key:=Range(Cells(3, 1), Cells(3, 1).End(xlDown)) _
 , SortOn:=xlSortOnValues, Order:=xlAscending

 With Sheets("CB").Sort
 .SetRange Selection
 .Header = xlYes
 .MatchCase = False
 .Orientation = xlTopToBottom
 .SortMethod = xlPinYin
 .Apply
 End With

FinalRow = Sheets("CB").Cells(Rows.Count, 1).End(xlUp).Row

 Range(Cells(3, 1), Cells(FinalRow, 1)).Select
 Cells(3, 7).Value = 1
 Cells(3, 7).Copy
 Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlMultiply
 Application.CutCopyMode = False
 Cells(3, 7).ClearContents
 Selection.HorizontalAlignment = xlLeft

 Range(Cells(3, 3), Cells(FinalRow, 3)).Select
 Selection.NumberFormat = "#,##0.00_);[Red](#,##0.00)"

Sheets("CB").Cells(1, 1).Value = MonthName & " " & YearNum & " Credit Balances"

Loop to remove all unnecessary

spaces from the cells

To concatenate the cut off

part of the vendor name

To delete the useless column

of data

Loop from bottom of data to

top deleting blank rows

Selects the range of

the data and sorts

the data ascending

based on vendor

number

The vendor numbers are stored as

text. Changing the cells to number

format does not correct this. To

change to numbers, I copied 1 and

opted to paste, special , multiply the

range of vendor numbers.

Changes the credit balances to

number format and turns them red

Gives the data a heading which

specifies the month and year

***Step 5: Transfer data to year summary file.
Now that the month data has been formatted, it is ready to be entered into the year summary file. The
two sheets look like this:

Month Data

Year Summary

 As you can see above, many vendors in the year summary do not appear in the month data because
they have a credit balance of zero. Also, there exist vendors in the month data that do not appear in the

year summary sheet. For example, vendor number 1335 “BOXERCRAFT INCORPORATED” does not exist
in the year summary file and a row will need to be inserted between vendor number 1284 and vendor
number 1340 in the year summary sheet where that new vendor can be inputted. In order to address
these two concerns, I designed a series of loops—one outside loop with two loops inside.

The outside loop goes through each row of data on the month sheet (the data to be transferred). The
first inside loop selects each row in the year summary sheet. The purpose of the inside loop is to find a
vendor match in the year summary sheet. Within the first inside loop, if the value in column a of the
month sheet equals the value of column a of the year summary sheet, then the value in the relative
month in the year file (measured by MonthNum + 2 columns) is equal to the value in column c (the
credit balance amount) of the month file. The next step is to note on the month file next to the credit
balance that this vendor and balance existed previously in the year file (“Existing Balance” will appear in
column e). Also, if the statement is true, then the start x value (where to start on the row for the inside
loop) increases by one. That way the loop does not have to return and loop through rows that have
already been inputted. If not for this, then the first inside loop would start at 3 for every single row in
the outside loop. The loop also exits so that the loop does not continue pointlessly.

The second inside loop occurs when the first inside loop went unsuccessfully through each row of the
year file and was not able to find a vendor match. The way that this second loop knows that the loop did
not find a vendor match is that there will be no “Existing Balance” appearing in column e of the month
file. This will signal the start of the second loop—the insert vendor loop. Now, we want to find the exact
row where the vendor number fits (i.e. the vendor number is greater than the row above it and less than
the row below it). To accomplish this, the If statement will be used to find the row where the vendor
number ceases to be greater than the other rows. The second inside loop will insert a row, insert the
vendor number in column a, insert the vendor name in column b, and insert the credit balance in the
appropriate column (measured by MonthNum + 2). Then, like the first loop, the code will make a note
on the month sheet (“New Balance” will appear in column e). This time, the note means that this vendor
had a credit balance of zero previously and is a new credit balance. Also like the first inside loop, the
code will add one to the start x value so that the loop does not start at the top of the year summary
sheet again.

New Month Sheet

The code to transfer month data to the year summary sheet:

Col = MonthNum + 2
Dim x As Long
x = 3

For Row = 3 To FinalRow

 For BKSTRow = x To FinalRowBKSTData
 If Sheets("CB").Cells(Row, 1).Value = Sheets("BKST Data").Cells(BKSTRow, 1).Value Then
 Sheets("BKST Data").Cells(BKSTRow, Col).Value = Sheets("CB").Cells(Row, 3).Value
 Sheets("BKST Data").Cells(BKSTRow, Col).NumberFormat = "#,##0.00_);[Red](#,##0.00)"
 Sheets("CB").Cells(Row, 5).Value = "Existing Balance"
 x = BKSTRow + 1
 Exit For
 End If
 Next

 If Sheets("CB").Cells(Row, 5).Value = "" Then
 For BKSTRow = x To FinalRowBKSTData
 If Sheets("BKST Data").Cells(BKSTRow, 1).Value > Sheets("CB").Cells(Row, 1).Value Then
 Sheets("BKST Data").Cells(BKSTRow, 1).EntireRow.Insert
 Sheets("BKST Data").Cells(BKSTRow, Col).Value = Sheets("CB").Cells(Row, 3).Value
 Sheets("BKST Data").Cells(BKSTRow, Col).NumberFormat = "#,##0.00_);[Red](#,##0.00)"
 Sheets("BKST Data").Cells(BKSTRow, 1).Value = Sheets("CB").Cells(Row, 1).Value
 Sheets("BKST Data").Cells(BKSTRow, 2).Value = Sheets("CB").Cells(Row, 2).Value
 Sheets("CB").Cells(Row, 5).Value = "New Balance"
 x = BKSTRow + 1
 FinalRowBKSTData = Sheets("BKST Data").Cells(Rows.Count, 1).End(xlUp).Row
 Exit For
 End If
 Next
 End If
Next

New Year Summary Sheet

Outside Loop

Inside Loop #1

Inside Loop #2 See discussion on

previous page

***Step 6: Move month data to new workbook, save in same directory, and save year summary.
After looping through all the rows of data on the month sheet, the update of the year summary sheet is
complete. The month sheet is ready to be moved to a new workbook and saved in the same directory as
backup. The year summary will then be saved. The following code executes this step:

Sheets("CB").Move

ChDir filename

Sheets("CB").Name = MonthName & " Credit Balance"

ActiveWorkbook.SaveAs filename:=filename & "\" & MonthName & YearNum & ".xlsm",
FileFormat:=xlOpenXMLWorkbookMacroEnabled

ActiveWorkbook.Close

ActiveWorkbook.Save

Application.Quit

***Step7: Create new file when next year has arrived.
Note2 states that between step 2 and step 3, additional code determines whether a new file needs to be
created for the next year. We will now return to discuss this step.

First, if the year (YearNum) is not equal to the year noted in Cell A1 of the year summary sheet, then this
month data does not belong in this year’s sheet and a new file needs to be created (Note: this will occur
in February of each year). A message box will appear to confirm the user’s intention. Then, a new folder
will be created to house the new year file using the function MkDir. Next, we need to use the SaveAs
function instead of the SaveCopyAs function. If we use the SaveCopyAs function, then the previous year
summary file will remain the active workbook. Using the SaveAs function will be equivalent of making a
copy of the current file in a new folder location. In addition, this will allow us to maintain VBA code
across different years of files.

Dim NewYear As Boolean
NewYear = False

If YearNum <> Cells(1, 1).Value Then
result2 = MsgBox("This will create a new file for " & YearNum & ". Is this correct?", vbYesNo, "Are you sure?")
 If result2 = vbYes Then
 NewYear = True

 On Error Resume Next
 MkDir "C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\" & YearNum
 On Error GoTo 0

 ActiveWorkbook.Save
 ActiveWorkbook.SaveAs filename:="C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\" _
 & YearNum & "\AP Credit Blances" & YearNum & ".xlsm", FileFormat:=xlOpenXMLWorkbookMacroEnabled

 Else
 Exit Sub
 End If
End If

Moves the month data sheet to a new workbook. This workbook

becomes the active workbook.

Renames the sheet

Saves the sheet in the same file path and

closes it (filename defined previously)
Year summary becomes

active workbook, saves and

exits Excel

This following code is then executed to format the new year sheet. We first need to change the year of
the file in Cell A1. Then, the code deletes all rows except for two. These will be the lower and upper
bounds of the vendor numbers so that when the loops are executed to bring in the month data, the
rows will be inserted between these bounds. After the loops are executed, the final code at the bottom
is executed. This deletes those lower and upper bounds.

Dim Row As Long
Dim BKSTRow As Long
Dim FinalRowBKSTData As Long

If NewYear = True Then

 Cells(1, 1).Value = YearNum

 FinalRowBKSTData = Sheets("BKST Data").Cells(Rows.Count, 1).End(xlUp).Row

 For BKSTRow = FinalRowBKSTData To 5 Step -1

 Sheets("BKST Data").Cells(BKSTRow, 1).EntireRow.Delete

 Next

 Cells(3, 1).Value = "0"

 Cells(4, 1).Value = "99999"

End If

If NewYear = True Then

 Sheets("BKST Data").Cells(FinalRowBKSTData, 1).EntireRow.Delete

 Sheets("BKST Data").Cells(3, 1).EntireRow.Delete

End If

Discussion of Learning and Difficulties Encountered

This project was very fulfilling. It challenged my understanding of Visual Basic and I was really tested in
creating a solution for this business problem. The main difficulty I encountered was the code created for
step 5—inputting the month data into the year sheet. Many loops were performed that inserted rows
and vendors in wrong locations before I developed a loop that would correctly input the data from the
month sheet to the year sheet. One possibility that I considered in solving step 5 was to simply skip the
new vendors and insert rows at the end of the year data. Then, I considered using the sort function to
return the vendors to ascending order. Conceptually, I did not believe that doing it that way was as
efficient as using two loops inside of another loop. I believe that using the loops is concise and more
professional. I also experienced a little difficulty creating a new workbook for the next year. The
challenge was how to save the file to a new folder while also maintaining the VBA code and keeping
open the newly created file. I believe that the way I addressed the problem was the correct one.

Creates lower and upper bounds for

inserting vendor numbers in Step 5

Code executed after Step 5 to

delete lower and upper bounds

Assistance

I did not receive substantial assistance from another person or persons. I did receive some help via
online searches of the problems I was encountering. I also received semester-long tutelage from the
amazing Professor Gove Allen.

Exhibit A: Full VBA Code

Sub callGetData(control As IRibbonControl)
 Call InputData
End Sub

Sub InputData()

Dim LastModified As Date
LastModified = FileDateTime("C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\Copy of credit balance.txt")

Dim WhatMonth(1 To 12) As String
Dim MonthName As Variant
Dim MonthNum As Integer
Dim YearNum As Integer

WhatMonth(1) = "January"
WhatMonth(2) = "February"
WhatMonth(3) = "March"
WhatMonth(4) = "April"
WhatMonth(5) = "May"
WhatMonth(6) = "June"
WhatMonth(7) = "July"
WhatMonth(8) = "August"
WhatMonth(9) = "September"
WhatMonth(10) = "October"
WhatMonth(11) = "November"
WhatMonth(12) = "December"

If Month(LastModified) = 1 Then
MonthNum = 12
YearNum = Year(LastModified) - 1
Else
MonthNum = Month(LastModified) - 1
YearNum = Year(LastModified)
End If

MonthName = WhatMonth(MonthNum)

result = MsgBox("The last file was downloaded from VR on " & LastModified & ". Are you trying to input " _
& MonthName & " " & YearNum & "?", vbYesNo, "Confirmation")

If result = vbNo Then

MsgBox "Please download after the first of the month."

Exit Sub

End If

Dim filename As String

filename = ThisWorkbook.Path

If Dir(filename & "\" & MonthName & YearNum & ".xlsm") <> vbNullString Then

MsgBox "Error. This month has already been inputted. Please wait until next month."

Exit Sub

End If

Dim NewYear As Boolean
NewYear = False

If YearNum <> Cells(1, 1).Value Then
result2 = MsgBox("This will create a new file for " & YearNum & ". Is this correct?", vbYesNo, "Are you sure?")
 If result2 = vbYes Then
 NewYear = True

 On Error Resume Next
 MkDir "C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\" & YearNum
 On Error GoTo 0

 ActiveWorkbook.Save
 ActiveWorkbook.SaveAs filename:="C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\" _
 & YearNum & "\AP Credit Blances" & YearNum & ".xlsm", FileFormat:=xlOpenXMLWorkbookMacroEnabled

 Else
 Exit Sub
 End If
End If

Dim Row As Long
Dim BKSTRow As Long
Dim FinalRowBKSTData As Long

If NewYear = True Then

 Cells(1, 1).Value = YearNum

 FinalRowBKSTData = Sheets("BKST Data").Cells(Rows.Count, 1).End(xlUp).Row

 For BKSTRow = FinalRowBKSTData To 5 Step -1

 Sheets("BKST Data").Cells(BKSTRow, 1).EntireRow.Delete

 Next

 Cells(3, 1).Value = "0"
 Cells(4, 1).Value = "99999"

End If

Sheets.Add

 With ActiveSheet.QueryTables.Add(Connection:= _
 "TEXT;C:\Users\David\Documents\.........Fall 2012\VBA EXCEL\Final Project\Copy of credit balance.txt", _

 Destination:=Range("A1"))
 .TextFileColumnDataTypes = Array(2, 2, 2, 1)
 .Refresh BackgroundQuery:=False
 End With

 Range("C5").Select

 ActiveWorkbook.Connections("Copy of credit balance").Delete

 ActiveSheet.Name = "CB"

Dim FinalRow As Long
Dim Col As Long

FinalRow = Sheets("CB").Cells(Rows.Count, 1).End(xlUp).Row

For Row = 1 To FinalRow

 For Col = 1 To 4

 Cells(Row, Col).Value = Trim(Cells(Row, Col).Value)

 Next

 If Cells(Row, 1).Value = "" And Cells(Row, 2).Value = "" And Cells(Row, 4).Value = "" Then

 Cells(Row - 1, 3).Value = Cells(Row - 1, 3).Value & " " & Cells(Row, 3).Value

 End If

Next

Cells(2, 2).EntireColumn.Delete

For Row = FinalRow To 2 Step -1

If Cells(Row, 1).Value = "" And Cells(Row, 3).Value = "" Then

Cells(Row, 1).EntireRow.Delete

End If

Next

Columns("A:C").EntireColumn.AutoFit

 Range("A2").Select
 Range(Selection, Selection.End(xlToRight)).Select
 Range(Selection, Selection.End(xlDown)).Select
 Sheets("CB").Sort.SortFields.Clear
 Sheets("CB").Sort.SortFields.Add Key:=Range(Cells(3, 1), Cells(3, 1).End(xlDown)) _
 , SortOn:=xlSortOnValues, Order:=xlAscending

 With Sheets("CB").Sort
 .SetRange Selection
 .Header = xlYes
 .MatchCase = False
 .Orientation = xlTopToBottom

 .SortMethod = xlPinYin
 .Apply
 End With

FinalRow = Sheets("CB").Cells(Rows.Count, 1).End(xlUp).Row

 Range(Cells(3, 1), Cells(FinalRow, 1)).Select
 Cells(3, 7).Value = 1
 Cells(3, 7).Copy
 Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlMultiply
 Application.CutCopyMode = False
 Cells(3, 7).ClearContents
 Selection.HorizontalAlignment = xlLeft
 Range(Cells(3, 3), Cells(FinalRow, 3)).Select
 Selection.NumberFormat = "#,##0.00_);[Red](#,##0.00)"

Sheets("CB").Cells(1, 1).Value = MonthName & " " & YearNum & " Credit Balances"

FinalRowBKSTData = Sheets("BKST Data").Cells(Rows.Count, 1).End(xlUp).Row

Col = MonthNum + 2

Dim x As Long

x = 3
For Row = 3 To FinalRow

 For BKSTRow = x To FinalRowBKSTData
 If Sheets("CB").Cells(Row, 1).Value = Sheets("BKST Data").Cells(BKSTRow, 1).Value Then

 Sheets("BKST Data").Cells(BKSTRow, Col).Value = Sheets("CB").Cells(Row, 3).Value

 Sheets("BKST Data").Cells(BKSTRow, Col).NumberFormat = "#,##0.00_);[Red](#,##0.00)"

 Sheets("CB").Cells(Row, 5).Value = "Existing Balance"

 x = BKSTRow + 1

 Exit For
 End If
 Next

 If Sheets("CB").Cells(Row, 5).Value = "" Then
 For BKSTRow = x To FinalRowBKSTData
 If Sheets("BKST Data").Cells(BKSTRow, 1).Value > Sheets("CB").Cells(Row, 1).Value Then

 Sheets("BKST Data").Cells(BKSTRow, 1).EntireRow.Insert

 Sheets("BKST Data").Cells(BKSTRow, Col).Value = Sheets("CB").Cells(Row, 3).Value

 Sheets("BKST Data").Cells(BKSTRow, Col).NumberFormat = "#,##0.00_);[Red](#,##0.00)"

 Sheets("BKST Data").Cells(BKSTRow, 1).Value = Sheets("CB").Cells(Row, 1).Value

 Sheets("BKST Data").Cells(BKSTRow, 2).Value = Sheets("CB").Cells(Row, 2).Value

 Sheets("CB").Cells(Row, 5).Value = "New Balance"

 x = BKSTRow + 1

 FinalRowBKSTData = Sheets("BKST Data").Cells(Rows.Count, 1).End(xlUp).Row

 Exit For
 End If
 Next

End If
Next

If NewYear = True Then

 Sheets("BKST Data").Cells(FinalRowBKSTData, 1).EntireRow.Delete

 Sheets("BKST Data").Cells(3, 1).EntireRow.Delete

End If

Sheets("CB").Move

ChDir filename

Sheets("CB").Name = MonthName & " Credit Balance"

ActiveWorkbook.SaveAs filename:=filename & "\" & MonthName & YearNum & ".xlsm",
FileFormat:=xlOpenXMLWorkbookMacroEnabled

ActiveWorkbook.Close

ActiveWorkbook.Save

Application.Quit

End Sub

