
1 |  P a g e
 

Spreadsheet Automation 

Jacob Stonehocker    Final Project Write-up         12/6/2012 

Executive Summary 

I currently work for the BYU Office of Compliance and Audit and have built a solution to meet a business 
need within the office. The need for my solution arose because of changes being made to the overall 
audit strategy within our office.  Audits will now be done using broader populations, which necessitates 
a way to dissect the population and analyze it across several different categories of transactions based 
on several different attributes.  There will be an ongoing need for an extensive analysis of the 

population for each 
audit; for this reason, I 
was asked to create a 
macro that will 
automate the 
otherwise long, 
arduous and divergent 
process.  My solution 
is a set of templates 
(one for each category 
of transactions), each 
one housing a macro, 
into which one can 
drop the current year 
population following 
the instructions in the 
template, run the 
macros, and within 
minutes have a set of 
workbooks in a 
common folder that 
contain all of the 
desired analyses, 
complete with 
formatted summary 
tables and graphs.  
This will save our 
department many 
hours of student 
employee labor time 
and will save the full-
time staff from having 

to explain what analysis they want to each new student employee that is given the task.  The flowchart 
included here outlines the process of using my solution to create the desired analyses. 



2 |  P a g e
 

Implementation Documentation 

I will describe how one of the macro templates works; all of the templates are very similar, with minor 
tweaks for each different data set.  The following is a screen shot of the template with instructions for 
the user for analyzing a population of general expenses for a given college: 



3 |  P a g e
 

There are several steps in the instructions of the template that could be written into the macro, but are 
not, for different practical reasons. For example, step 5, delete the total row.  This could be automated, 
but is not, because it causes problems if you need to re-run some macros, but not all of them.  If this 
was automated, and you needed to make an adjustment on one sheet, you would have to delete all of 
the output spreadsheets and start over.  Also, the macro is split up into four buttons instead of just one. 
These and other items that could be automated or combined and are not were done purposely that way 
to add flexibility to the solution.  The formatting of the template worksheet follows the format of other 
templates used by our department.  This includes the command buttons being on the spreadsheet 
instead of in the ribbon; it is done for consistency with other templates and it flowed better that way 
because of the way it is set up. 

The function of the macros is as follows: 

Create Data Tabs macro: 

This macro creates an “absolute value of amount” column in the population worksheet and then 
sorts the population in descending order by absolute value of amount.  This is done so that 
amounts that net out to zero will be right next to each other in the data and so that the largest 
transactions, which are the most important, are at the top. For the general expenses analysis, 
this macro then creates the following data subset worksheets: 

"Debits", "Credits", "Credits - Cashnet", "Credits - Other", "Motor Pool", "AP", "AP - 
FastTrack", "AP - Other", "Pcard", "Air Fare", "JE", "JE - By Journal ID", "Supplies", "Y-
Expense", "All 63XX". 

These data subsets are each created by copying the population worksheet, renaming it, and 
then deleting all of the rows that do not meet the criteria of that particular data subset.  Screen 
updating is turned off for this and the other macros, which saves a considerable amount of time 
in the execution of the code. 

Create Summary Tabs macro: 

This macro, for each data subset that will be analyzed, creates the following summary tabs: 

"By Fund" & ref, "By Operating Unit" & ref, "By Period" & ref, "By Account" & ref, “By 

Dept" & ref, “By Line Descr" & ref, "By Source" & ref, 

Where “ref” = the name of the data subset to be analyzed, i.e. “By Fund – Debits” would be a 

summary worksheet by fund based on the data subset of debit (positive) amounts only. 

After creating each tab, the macro copies and pastes the column needed for the summary row 

headers from the data subset worksheet into the summary worksheet, removes duplicates, and 

creates the column headers ($ in population, % of population, # in population, % in population, 

and average $ in population).  The macro then populates the summary table using the “countif” 

and “sumif” functions on the relevant data subset. This is done for each summary worksheet for 

each data subset to be analyzed. 



4 |  P a g e
 

After creating the summary table, the macro calls other macros that format the data tables 

(with cell borders, coloring every other row in the table, etc.) and create the graphs desired for 

each summary. 

The macro does not create all of the summary tabs for some of the data subsets because it 

doesn’t make sense to do so.  For example, all AP transactions have the same source code, so it 

wouldn’t be meaningful to summarize that data set by source code.  When this is the case, the 

tab is left blank. 

At the end of this process, there are roughly 60 worksheets in the workbook, which consists of 

the data subsets and a set of summary spreadsheets for each data subset. 

Replace Worksheet Totals macro: 

This macro simply adds a total on amount to the bottom of each data tab, the original 

population as well as each data subset.  It also creates a bold “TOTAL” row heading and formats 

the total cell with a “top and double bottom” border. 

Export Tabs macro: 

This macro exports each data subset and its related summary tabs into a new workbook and 

saves that workbook in the same location as the template workbook.  When finished, the output 

is as follows: 

To clarify, each of the workbooks 
shown here contains a data 
subset and the relevant 
summaries on that data subset.  
For example, the worksheets in 
the workbook “All 63XX 
Summary” would be as follows: 

“All 63XX” (data subset), “By 
Fund – All 63XX”, "By Operating 
Unit– All 63XX", "By Period– All 
63XX", "By Account– All 63XX", 
“By Dept– All 63XX", “By Line 
Descr– All 63XX", and "By 
Source– All 63XX" (summaries as 
shown below). The screen shot 

below is taken from the “Account 63XX Population Summary”, but is similar to the “All 63XX Summary” 
and the other workbooks shown above. 



5 |  P a g e
 

 

A few of the data subsets that are created are for information only and do not have summaries run on 
them.  These data subsets are saved with the data subsets that they relate to. For example, the data 
subset “AP – FastTrack” is not summarized; it is just included in the “AP Summary” workbook. 

Learning and Conceptual Difficulties 

One of the conceptual difficulties that I encountered during this project was changing the code to accept 
variables as inputs in order to make the same code work for different data sets.  When I was given the 
project, I was asked to analyze travel transactions.  After I finished that, I was asked to do the same thing 



6 |  P a g e
 

for the other categories of transactions. Rather than copy the code over and over and tweak it for every 
data subset, I wanted to make the code more dynamic so that I could just pass in variables to the code 
for each data subset and it would work without any alterations.  I was able to figure out how to make 
that work, and in so doing learned a lot more about how to work with variables that are passed in to a 
sub procedure. To illustrate this point, I include below a sub procedure in which I used this concept that 
I learned. The variable “sheetSuffix” is the name of the data set being analyzed. 

Sub exportTabs(sheetSuffix As String) 
Application.ScreenUpdating = False 

Sheets(Array(sheetSuffix, "By Fund - " & sheetSuffix, "By Operating Unit - " & sheetSuffix, _    

"By Dept - " & sheetSuffix, "By Period - " & sheetSuffix, "By Account - " & sheetSuffix, _          
"By Source - " & sheetSuffix, "By Line Descr - " & sheetSuffix)).Move 

ActiveWorkbook.SaveAs Filename:=ThisWorkbook.Path & "\" & sheetSuffix & " Summary" _       
& ".xlsx", FileFormat:= xlOpenXMLWorkbook, CreateBackup:=False 

         ActiveWorkbook.Close 
End Sub 

The code above illustrates another concept that I learned, that of moving worksheets into a new 
workbook, naming, saving, and closing the new workbook, and returning to the main workbook to 
repeat the process, all without any user input.  We learned some of these concepts in class, but I really 
learned to apply them in these instances.  I also learned on my own how to write the creation of graphs 
in VBA.  I originally just gave instructions to the user of which graphs to use on each summary 
spreadsheet, but as the project got larger I decided to automate that part of it, and now the macro 
creates the desired graphs for each summary spreadsheet, which vary based on summary key (fund, 
source, etc.). 

I thought about having the macro go out to the website to run the population data query and bring it in 
automatically, but the query takes a while to run, especially for bigger populations, and the user 
interface would have been difficult to manipulate through VBA.  It would have taken quite a while to 
write the code for something that would save the user very little, if any, time. For these and other 
reasons I felt like the solution would be more robust, simple, and practical to start with the data in excel. 

Assistance 

I did not receive substantial help from anyone on this project.  I did turn to the internet from time to 
time to help me figure out how to write certain pieces of code, but I did not consult with anyone.  My 
biggest sources of help were the Macro Recorder and the internet. 

 

 

 


