
Eric Santos 

Executive Summary 

The purpose of this project is to generate groups and a bracket for a tournament. It divides all teams into 

groups of 4, generates a schedule with games home and away, and creates a bracket for the tournament. 

Groups can be refreshed to account for results in the schedule and the bracket automatically updates 

with the winner. I created this to help my friends and I organize our soccer tournaments. 

Implementation 

To implement this project, I created a Class Module called CTournament that contains all methods 

necessary to determine which player gets which team, create the groups, organize the schedule using 

the round robin algorithm, and lay out the bracket with formulas to calculate the winner according to 

the results. 

This class also knows how to order each group according to the results in the schedule sheet.  

I will give a detailed description of each of these sections below. 

1 – Determine teams 

There are three sheets relative to this part of the code. One called Participants, one Teams and another 

Players. The Participants sheet is meant to put the real names of people in the tournament. The Teams 

sheet needs to have the names of the teams that will be in the tournament. And the Players sheet will 

be populated with a random assignment of each participant to a team. This will make the tournament 

fair. 



 

 

 

2 – Determine groups 

I keep multi-dimensional array called “groups” that help me keep track of which team is in what group. I 

will use this array to generate my schedule of games (see below). Groups are kept in memory until 

displayed in the “Groups” tab. 

3 – Create Schedule 

The schedule was one of the more challenging parts in this project. I not only had to make sure each 

team played against all other teams, but I also had to find a way to organize it in rounds, so that I could 

create an actual schedule out of it. 

After much Googling (and possibly some Binging) and a lot of failed attempts to generate my schedule 

(my first few initiatives only worked for the first few games and would repeat at least one game per 

round), I found some good explanation about the Round Robin algorithm and decided to implement 

that. 



It was hard to implement this algorithm and make it work with the variables and arrays I already had set 

up, but it totally paid off, since I could not have come up with that myself. After the piece of code above 

runs, my combination() array contains a list of all possible games for a certain group. Notice that I don’t 

have a list for all games in the tournament, just for this one group. (Which means I loop and do this for 

each group in my groups array). 

4 – Populate Schedule 

The next step is to actually display this array in the “Schedule” sheet in a way that the user can easily see 

what games are happening in each round. The main challenge in this part was to figure out the exact 

position of the games. Remember, I only had one group at a time, so I had to fill up the schedule for the 

group leaving enough room for the next group’s games, in my loop. 

Here is what I did: 

Notice that I use ActiveCell.Offset for everything, so that I could be flexible enough to support different 

types of group sizes and etc. This was very challenging to get just right. Basically I had to figure out in 

what round I am (to know how many rows to jump ahead) and how far into the group I have been (so 

that within the same round, I know how many rows to skip). After the schedule is ready, we can go 

ahead and populate the groups. 

Here is how a schedule looks like: 



 

5 – Populate Groups 

Displaying the groups is also challenging because I had to position things just right. Using Offset and 

some control variables gets very confusing sometimes, I was able to use some control variables to assist 

me in displaying the groups in two columns rather than only one.  

This is how the groups tab looks like: 

  

 



The refresh button is one of the most involved ones. The idea behind is that people will fill out the 

schedule tab with the results for each game, and by clicking “Refresh” they can see those results reflect 

in the group. (For example, if Brazil beat Spain in the first game in the schedule, this is what the group 

should look like: 

 

 

To assist me in calculating the group order, I created a orderedGroup array and a calculateGroupOrder 

function that returns an ordered array with all the values ready to repopulate the Groups sheet. The 

logic is not very complicated. I had to loop through each round in my tournament, then each game per 

group in the round, and find where exactly the results are. If the results are empty, then the game has 

not happened yet and I don’t have to update my array. Otherwise, I give the winning team 3 points (1 if 

there was a draw), and update the statistics of both teams. 

After the calculations, I have to make sure that the array is ordered by number of points. For that I 

implemented a simple bubble sort algorithm that does the job. Here it is: 



 

After all this, I have an array with the group information ordered by number of points. 

This way, when the user hits refresh, the PopulateGroup function will call the CreateOrderedGroup 

function before displaying each group. 

6 – Create the Tournament 

The tournament was probably the hardest one to figure out. There is a lot of math behind the pattern on 

a tournament schedule, and I had to dig into how, mathematically, I could generate a tournament that 

displays things nicely organized when I have a variable number of teams in my input. 

As a disclaimer, my bracket generator is working well when the appropriate number of teams is placed in 

the tournament. If I have a number that is a power of 2, it works fine. The problem is when I have odd 

numbers with which it is not possible to lay out a perfect tournament unless another criteria is 

determined (do we have qualifiers? Some teams will get a bye round?). Since I have already spent too 

much time in this project, I decided not to implement these extra features right now.  

This is how my tournament tab looks like: 



 

Now, it may look somewhat easy to lay this out, but it was actually quite challenging. For each round of 

the tournament I had to figure out how much spacing in between the games I should have (which 

changes according to the number of teams and etc) as well as how to create nice borders to give it a feel 

that two games connect to one game in the following round. 

Most importantly, I also implemented the functionality that when games results are typed in, the 

winning team would be automatically populated into the next round’s cell, so the user doesn’t have to 

type the winner’s name. 

If you look at the populateBracket function, I have to get the Log base 2 of the number of teams I have 

left in the tournament to determine how many rounds I have left. As I went through each round, I 

noticed that the spacing between games increased in this pattern: 1 row between games for the first 

round, 3 rows between games for the second round, 7 rows between games for the third round, and etc. 

I realized that this was the sum of the all powers of 2, starting at zero. For example, at round one, the 

spacing was 2 to the power of 0. At round 2, it was 2 to the power of 0 plus 2 to the power of 1. At round 

3, It was the sum of 2 to the power of 0, 2 to the power of 1 and 2 to the power of 2.  

So I decided to create a helper function that calculates the sum of the powers of 2, and all I had to do 

give it my current round and it would return the spacing I needed to do between each game.  

This sounds somewhat straight forward now, but believe me, I spent a long time trying to figure this out.  

I also added comments in the first cells so that the user can quickly see what person is playing with that 

specific team.  

 



What I learned 

This project helped me learn some concepts that we have not touched in class and reinforce others that 

we have discussed in class. 

I think the most useful thing I learned was how to use a Class Module. I liked that I could create a 

tournament object and call my own functions through it. I see how class modules can help organize and 

structure VBA code, so I am glad I tried using it. 

I learned a good deal about just using VBA overall. By debugging weird errors I was getting, I realized that 

I used my variables in the wrong way. I learned that you have to have a static number at compile time for 

your variable dimensions, but that I can redim it using a variable. 

I learned that it isn’t easy to lay things out relatively to one another using one loop that fits all scenarios. 

Though sometimes it is faster just to hard code things, I enjoyed the challenge of figuring out specific 

patterns and algorithms that would provide the result I needed. 

This project also helped me get some more experience with ordering and shuffling arrays, and I also 

learned how to add comments to cells. I had never done that before. 

Unfortunately, I underestimated the amount of work this project was going to take. Some of the 

problems I was trying to solve took so long that I didn’t have time to implement all the features I wanted. 

My original plan was to account for different types of tournaments and to handle the edge case 

scenarios (when the number of teams is not perfect) in a good way. 

Assistance 

I had not assistance as far as no one typed any of my code for me. I did however, use the internet a lot to 

try to find solutions for my problems. For some of the algorithms I have (like Round Robin), I found an 

implementation online in a different programming language and I had to port it to VBA and make it work 

with my program. So Google helped me, but at the end of the day I implemented everything. 

 


