

Argus Translator 1.0

David Malone

Executive Summary

 I have been working at Utah Retirement Systems on the real estate investment team for

approximately 6 months. One of my assignments has been to assess the risk within the real estate

portfolio of the overall state pension fund. Monte Carlo simulation is one of the tools that I and

my team have chosen to use to assess risk.

 Argus DCF is a software platform used to build financial models for various types of

commercial real estate properties. A single Argus file contains significant amounts of data

related to a single property, which is then used to build a discounted cash flow schedule and

determine the IRR associated with those cash flows.

Though it is considered an industry standard software platform, it is not without its

weaknesses. One of these is its Monte Carlo simulation engine, which is neither as fast nor as

powerful as Excel add-ins such as Risk Solver and ModelRisk. While Argus will export its

assumptions and results into Excel, the exported data are in a static format. In order for this

exported data to be useful, it is necessary to reconnect the assumptions to the results using

formulas in order to create a dynamic model. Only then can the model be used in Monte Carlo

simulations. This requires a significant time commitment, often several days, for each property.

With a portfolio in excess of 300 properties, the time commitment required to accurately assess

portfolio risk is prohibitive.

The program I have designed pulls data from an Access database containing Argus data

and then builds a dynamic cash flow model in Excel that is simulation-ready. I will further

discuss this program and its functionality in the pages that follow.

Implementation

The code contained in this VBA project performs the following functions:

1. Pulls a list of all properties that currently have data in the Access database for the user to

choose from, as shown here (property specific information has been disguised):

2. Pulls the tenant-specific rent data associated with the property chosen in step 1, as shown

here:

3. Pulls additional rent data saved in a different table, as shown here:

4. Associates the additional rent data pulled in step 3 with the correct tenant data pulled in

step 2

5. Saves this rent data in an array, which is referred to throughout the rest of the program

6. Adds a tenant template worksheet for and builds an individual cash inflow stream for

each tenant, as shown here:

7. Adds an assumptions template and populates it, including adding named ranges to aid in

calculation, as shown here:

8. Pulls property-level expenses from the Access database and saves the necessary values

9. Adds a totals template and populates it with the revenue data from each of the tenant

worksheets as well as adds and calculates the property-level expenses

10. Adds some formatting to the various worksheets to present a more polished look, as

shown here:

The data required to perform this analysis was pushed to Access directly from Argus,

which created over 100 tables. This data is not stored in an easily digestible format. In order to

build the discounted cash flow model, significant amounts of data need to be pulled into Excel

from this Access database. This data then needs to be scrubbed and analyzed to ensure that only

relevant data is being used and to guarantee that this data is properly assigned to the correct

tenants. The program needs to be able to recognize the different nuances associated with each

tenant in order to calculate the cash flows associated with that tenant correctly and independently

of how it calculates another tenants’ cash flows. This was accomplished by building various

cases into the code so that it would react based on the data held within the Access tables. In this

way, I was able to “teach” the program how to handle the different values for each tenant.

Once the code has finished executing, the cash flow model is ready to be utilized in

Monte Carlo analysis. The model is fully dynamic, meaning that changing a value on the

assumptions worksheet will alter the results in the rest of the model. The distributions for Monte

Carlo analysis of these assumptions can be easily added manually to the assumptions worksheet.

(This task will still have to be performed manually due to the differences in assumptions across

property types, locations, and throughout time.)

Learning and Conceptual Difficulties

I learned the following from this project:

1. How to write the code to be able to handle multiple cases and scenarios – The revenues

from each tenant needed to be treated slightly differently in order to get the desired

results from the data in the OARentRoll and OASteppedInput tables.

2. How to build the code to react to different amounts of data – The rent roll data and other

tables may have fixed widths, but the number of rows for each property will be different.

I attempted to design the code to be able to respond to the variable nature of real estate

analysis.

3. How to better consolidate repeated sections of code – I attempted to use one section of

code for repeated actions as much as possible by writing one piece of code and passing it

different values to make it react slightly differently. For example, the AddSheet sub

procedure accepts a sheet name as well as a numeric value to determine whether to add a

blank worksheet or a template worksheet.

4. How to add and use named ranges via VBA – Using named ranges drastically simplified

the formulas required to calculate the values on the Totals worksheet as well as each of

the individual tenant worksheets.

5. How to connect to databases – I originally tried to pull the data I needed by using an

ActiveX Data Objects database connection. This method failed to produce results,

however, due to the fact that several of the columns I was attempting to extract data from

included reserved words in Access, such as the word “size.” As a result, I built the

necessary queries using Microsoft Query Wizard and then modified the code. I was later

able to use the ADOdb connection to pull some other additional data.

The most important thing I learned through this project is the importance of focusing on

getting the computer to complete just one task at a time. The programming for the overall cash

flow model seems very complicated when viewed as a whole, but breaking the project down into

various individual tasks makes execution much easier to achieve, though I recognize that the

code I have written may not be the shortest or best way to perform these tasks.

The financial model that this VBA code produces is also very basic. As I mentioned

before, Argus stores data in over 100 tables, some of which is irrelevant data to this analysis, but

I have surely overlooked some very important information in the 95 other tables that I did not

query. Furthermore, this code was written for and has only been used on one property. No two

properties are the same, meaning that the code as written will be insufficient to handle all of the

nuances of other properties. However, before I can improve this code I will need to further

analyze the Access database that Argus exports in order to rewrite the code to handle these

various new exceptions. I plan to continue to develop this project with the hope of improving and

simplifying the code as I build in increased functionality for use with other properties.

Assistance

 I did not receive direct help from any other person in writing the code for this project. I

did utilize Google and the responses to others’ questions on forums to guide me when I got stuck,

but I did not post any of my own questions or seek the help of anyone in person or otherwise for

this project. In addition, I previously had some basic experience using VBA to manipulate text in

Microsoft Word. This course is the first time that I have used VBA in Excel.

