
Derik Flanary

Excel Final Project: Product Locator List

Executive Summary

2.2 Executive summary of the project. This should contain a description of the business along with an

overview of the system you built

I work for American Biotech Labs in Alpine, Utah. ABL is a silver supplement manufacturer and

distributer. Silver supplements are a naturopathic medicine that is supposed to kill bacteria and

strengthen one’s immune system. The product is sold in both liquid and gel form. ABL has many different

brands that it markets in the two different forms of product. Some brands are geared toward

natural/organic food retailers and others are geared towards doctors and health practitioners. ABL has

just over 2000 stores worldwide that buys and sell their products. However, the current information

systems at ABL do not keep track of which stores carry which products. ABL does have a store locator

map on their website but it does not say whether that store carries the liquid product, the gel product, or

both. Also, when the customer service representatives are asked on the phone about certain stores and

their products, the representatives have to go into QuickBooks and look up the store and the last time

they purchased something, which takes a long time.

Therefore, my job was to create a macro in Excel that would first find out which stores sell which brands.

Then the Excel sheet is to go online and produce an updated map on geobatch.com that shows the

current stores and what they sell. The last thing the project does is provide a master sheet of the

retailers and doctors that the customer service representatives at ABL can use to look up information on

different stores for customers; they can edit the stores’ information; and they can add new stores to the

list which then can be added to the map automatically.

Implementation Documentation

2.3 Implementation documentation. Provide a concise, well-organized documentation of what you

actually did for your solution. You may want to use tables or bulleted lists to describe the components of

your solution and their role in the overall task. In any case, you should provide a textual description of

the elements so it is clear what you have done, why it was included, how it is intended to be used in the

task. Screen captures may be helpful in illustrating what you have done.

To start off I made five different macro buttons in a new tab called “ABL” on the ribbon that can be used

to control this document. The first one I will discuss is the “Update Store List” button.

The purpose of this macro is to form a list that takes the name of all the stores that are currently on our

store locator map and assign the products that they carry so they can be displayed on the map as well.

Excel will then prompt you to pick the excel file that has the recent QuickBooks data that you want to use

to update the list. For this project you should upload the customer Info (5) workbook.

This is done by using the code:

openfile = Application.GetOpenFilename(, , "Select File to Open")

If openfile = "" Then Exit Sub
End If

Application.Workbooks.Open openfile

The file you pick is assigned to the “openfile” string and then that string is called by the “open” method.

Once that workbook is open it takes the sheet with the data on it and copies it over to the main
workbook onto the sheet named “original” That looks like the one below.

This sheet contains a list of all the customers and all the transactions they made with ABL in the previous

9 to 12 months.

Next the macro will add the recent list that is being used for the store locator map and add it to excel

only if it is not already on excel. If it is not in the main workbook the macro will call for the workbook

named “Store Locator” that should be saved in the same file at the main workbook and copy the data

over the main workbook onto a sheet named “ALL”.

The next thing that needs to be done is to go back to the sheet “original” and remove all of the

transactions that were not the purchasing of product. First I moved the contents of “original” to

“TheSheet” to preserve the original contents in case something went wrong. To do this I had to create a

legend sheet that specified which items to keep and which items to delete. The legend sheet is displayed

below. The items in blue are the ones that were kept while the other ones were deleted off of the sheet.

This was done by using two for-to loops:

For x = 3 To rowcnt

 For y = legendCnt To otherrowcnt

 If InStr(1, TheSheet.Cells(x, 18).Value, Legend.Cells(y, 1).Value, vbTextCompare) > 0 Then
 TheSheet.Cells(x, 18).EntireRow.Clear

 End If

 Next
Next

It took in order each item that was to be deleted from “TheSheet” and went through the entire sheet and

cleared their row off the sheet. It then repeated this using the next item to be deleted until it had gone
to the end of the data on the legend sheet. I then got rid of all the empty rows by just removing the

duplicates since the only rows that were complete duplicates were the completely empty ones.

The next thing to be done was to order all the different products that were left under their respected

stores so that I could add them into one cell on the main “All” sheet. To do this I ran a do-until loop that
was actually quite complicated for me, but I got it to work:

Do Until rowNum = rowcnt
 If TheSheet.Cells(rowNum, 2).Font.Bold = True Then

 store = TheSheet.Cells(rowNum, 2).Value
 TheList.Cells(storeNum, 1).Value = store

 End If

 If TheSheet.Cells(rowNum, 2).Value = "" Then '.font.Bold = False And InStr(1,

TheSheet.Cells(rowNum, 2).Value, "Total", vbTextCompare) = 0 Then
 item = TheSheet.Cells(rowNum, 18).Value

 If InStr(1, TheList.Cells(storeNum, 2).Value, item, vbTextCompare) > 0 Or InStr(1,

TheSheet.Cells(rowNum, 7), "sample", vbTextCompare) > 0 Then
 TheList.Cells(storeNum, 2).Value = TheList.Cells(storeNum, 2).Value

 Else
 TheList.Cells(storeNum, 2).Value = TheList.Cells(storeNum, 2).Value & ", " & item

 End If

 End If

This set of instructions first had to list out the store in the first column and then put the products they

purchased in the next column. I then took the address and the phone number too for a reason I will
explain later. Since on “TheSheet”, that had all the companies and their transaction, the name of each

company was bolded so if the contents of cell in column one was bold then that value became the store

name that was printed on the sheet called “TheList”. If it found a store name it would keep the same row
on “TheList” until it found another store name and then the variable “storeNum” would increase by one

which would start filling out the next row on “TheList”. Then if the cells in column one were empty under
a store name it knew that they were the names of products and they were put sub sequentially into

column two on “TheList”. It then did a similar process to put the address and the phone number onto
“TheList” before “storeNum” increased to the next row on “TheList”. The instructions also made sure not

to include any products that were sold as samples because those are not sold in stores. Below is an

example of what “TheList” looked like when it was done.

Since many stores had bought the same product more than once in the past 9 months I needed to get rid

of all the duplicates on the list so I could then parse the products to their respective stores that were

found on the “ALL” sheet. To do this I ran an instr search for each product for each store on “TheList”
and if it found the product once it would copy it to column five. I wanted to use arrays here but for some

reason I could not get it to work so I settled for using another column since this sheet was going to be
hidden from the user anyway. Once the for-to loop had gone through every product name from the

legend and copied over the found products to column six it then copied back the products from column

six to column 2 using a mid-function to get rid of the commas at the beginning.

Cells(x, 2).Value = Mid(Cells(x, 6).Value, 3)

The next thing that needed to be done was to add the products I had now gotten for each store on

“TheList” and assign them to the same stores that were on the main list from the store locator map on
the sheet “ALL”. The one problem I faced here is that the names on the store locator map did not all

match the names that were used when the stores made transactions with the company. Therefore, I

was not able to get a match for every store that I had on “TheList”. This is why I had the addresses and
phone numbers of the companies still so I could use them to find matches for the products I had

collected. The first thing I did was run a two stage for-to loop that ran an instr search if it could find a
match between the companies on “TheList and the companies on “ALL”. I repeated this search trying to

find matches with the addresses and the phone numbers. Then I did an additional search by switching

the first and last names of the doctors to see if I could find any more matches. If I found a match I
highlighted the row in red on “TheList” and copied the products into the ninth column on “ALL” I also had

to go through “TheList and delete all the parentheses in the phone numbers so they could match the
ones on “All”:

For x = 2 To rowcnt

 store = TheList.Cells(x, 1).Value

 address = TheList.Cells(x, 3).Value
 phone = TheList.Cells(x, 4).Value

 newer = TheList.Cells(x, 5).Value
 For y = 2 To allrowcnt

 storeName = ALL.Cells(y, 1).Value

 addressName = ALL.Cells(y, 2).Value
 phoneName = ALL.Cells(y, 6).Value

 If InStr(1, addressName, address, vbTextCompare) > 0 And address <> "" Then

 ALL.Cells(y, 9).Value = TheList.Cells(x, 2).Value
 TheList.Cells(x, 2).EntireRow.Interior.ColorIndex = 3

 End If

 If InStr(1, phoneName, phone, vbTextCompare) > 0 And phone <> "" Then

 ALL.Cells(y, 9).Value = TheList.Cells(x, 2).Value
 TheList.Cells(x, 2).EntireRow.Interior.ColorIndex = 3

 End If

 If InStr(1, storeName, store, vbTextCompare) > 0 Or InStr(1, storeName, newer, vbTextCompare)

> 0 Then
 ALL.Cells(y, 9).Value = TheList.Cells(x, 2).Value

 TheList.Cells(x, 2).EntireRow.Interior.ColorIndex = 3

 End If
 Next

Next
ALL.Cells(1, 9).Value = "Products"

(“TheList”)

(“ALL”)

After all of the companies on the main list on “ALL” were placed with as many matches as I could find

then the list was complete and updated. The macro then proceeds to hide all the sheets but “ALL” So

that they can be touched or changed. That is the extent of what the first button does.

Original.visible = xlSheetVeryHidden
TheList.visible = xlSheetVeryHidden

TheSheet.visible = xlSheetVeryHidden
Legend.visible = xlSheetVeryHidden

The next button, “Update Store Locator”, now goes online to batchgeo.com where the map on the

website is made. Two message boxes appear when you push the button. The first one warns you that

this macro takes a long time since you are making a map of over 2000 stores and asks you if it is ok to

proceed. The second box is an input box that asks for the user’s email so the link and html of the finished

map can be sent to you. Once the macro opens up the site on Internet Explorer it needs to place all the

data from “ALL” inside a text box that must be clicked on to change. The box is shown below.

This part was extremely tricky and I had to go for help from Prof. Gove to figure it out. We figured out

that we had to change the “innerhtml” to what we wanted it to say for it to work. And the macro needed

to insert a chr(9) after each column and a chr(10) after each row. Therefore, I wrote a for-to code that

would put all of the data with chr(9) and chr(10) inside of a single string variable called “list”. And then I

set list equal to the “innerhtml” of the text box.

For x = 1 To rowcnt
 For y = 1 To colcnt

 If y = 9 Then
 list = list & Cells(x, y).Value & Chr(10)

 Else
 list = list & Cells(x, y).Value & Chr(9)

 End If

 Next
Next

agent1.document.ALL("sourceData").innerhtml = list

Once the data was inserted the macro then creates a map like the one below.

After the map is created the macro clicks on the “Save & Continue” button with brings up a new form. In

this form the name of the map “ABL Product Locator” is placed in the title and the email given earlier is

put in the email box.

When it comes with saving the map and submitting the form there was no id tag for the “Save Map”

button above. I got the form to submit by using the submit method, but for some reason the message

box below appears and I could not figure out why. With more time and help I could probably get that box

to go away. The following is the code I used to submit the form.

agent1.document.ALL("jsonSubmitForm").submit

The next three buttons are for the customer service representatives. The first of the three allows the user

to bring up the user form below and is able to search for a certain store by store name, street, city, zip,

phone number, or state. It will find each one and even show what products that store carries in the

check boxes on the right. There are a lot of products so the code here is quite long.

The next button will allow you to edit the information of the store that is highlighted or you just found. It

brings up a user form where you can change any information, including the products that they carry and

it will all be added to the list once you push save.

The last button allows you to add a new store with the macro taking you to the last row of data and then

bringing up the edit user form so you can add all the information for that store manually. The code for

the user forms uses for-to loops that do instr searches for the information in the search text boxes.

With all of these macros to automate the process it allows the employees of ABL to be more efficient in

their information and in helping customers find the products they want.

Discussion of Learning

There were a few problems that I faced along the way. The main problem was that the information

systems in ABL are outdated and unorganized. This made it extremely difficult for me to find the products

that each of the stores located on the map carry. This is because the one who made the map used

different names then the names that the company inserts when a transaction is made. I tried the best I

could with the data given to me to find as many matches as I could. I learned a lot from this as I tried

many different methods (no pun intended) to make it work like addresses, find methods, phone numbers,

and switching the names around to match the doctor’s names on the list. Another problem I faced is the

one I stated earlier about the submission form on the batchgeo website. We were not taught how to deal

with a source code without an id tag, Prof. Gove gave me some last minute advise and I was able to

almost get it to work, but in the end he said it was okay if I could not get it to work quickly. Also with the

website I learned about the characters used in a text box and how I had to use those to get the text I

wanted into the box so I could make the map correctly. Just working with that one website taught me a

lot on how to manipulate Internet Explorer through excel which I will definitely be able to use in the

future. The greatest thing I learned by working through this project was problem solving. This project

was just one problem and one error message after another. I had to learn quickly how to dissect the

issues so I could get to the root of the problem and fix it. This was difficult, but a great learning

experience in the end.

The only assistance I received on this project was a little help from the professor when dealing with the

online information. Besides that I figured it all out on my own, of which I am proud.

