
Tyler Oppie

4/13/2011

VBA Project Submission: ProQuest Dissertation Search and Save

2.1 Executive Summary

An ISYS professor is gathering information on every ISYS related dissertation done by

individuals, and what advisors advised these doctoral dissertations. My project’s purpose was to

facilitate the searching and storing of dissertation information through VBA. I started with a

dataset from an Access database of Universities. I created an Excel form to view and search

information from each school, then through a button click, Excel will query the online Proquest

Database for any dissertations from a particular school that were advised by a given last name.

Excel will navigate Internet Explorer to a proquest results page. From there the user can open a

dissertation’s abstract and then with a click on a button in Excel, save the dissertation title and

link to a spreadsheet.

This project will save hours of time that would have been spent clicking through web pages, and

copy/pasting links. The proquest website is a particularly slow website to use because it resets all

your search criteria every time you conduct a new search or use the browser’s back button. This

is all avoided through the browser automation accomplished through VBA. The Excel form also

facilitates queries on the existing university information. This project can easily be expanded to

include database tables of authors, advisors, or subjects into the web queries.

2.2 Implementation documentation

The first thing I accomplished through VBA was importing a database table to an Excel sheet.

This was done with a simple macro recording. After the data is in Excel, I created two Excel

forms. The first form (figure 2) takes a username and password and an option for on campus or

off campus. The form is accessible through a custom tab and button on the ribbon shown in

figure 1. When submitted, an IE agent instance is opened and saved as a module level variable.

The agent navigates to the proquest site where if off campus, the username/password will login

to route y, otherwise the agent will go straight to proquest.

Fig 1, Custom Proquest tab and ProQuest login button

Fig 2, Proquest login form

Once at proquest, the agent clicks buttons and makes combo box selections to reach the page

with the particular type of search to be done. The agent then saves this url as a module variable

and will refer to it every time a search is initiated by the user. This is essential since using the

browser back button to redo a search will wipe out all the button clicking and combo box

selection the agent does at first. Figure 3 shows a proquest page and highlights all the fields on

the page that the agent is manipulating to do the required type of search.

Figure 3, Proquest search page highlighting all manipulated elements

Once the search URL is saved(with the session ID etc), the login form closes and the search form

opens. The search form is based on the USDA form assignment from class with some additional

functionality. Similar to the USDA form a user can search for a university by name and click

first or next search. I added a combo box to allow the user to select a university from a list

instead of searching by name. Figure 4 shows the search form.

Figure 4, the Search form

After finding the University record they want to search for, the user inputs a last name of an

advisor in a text box, selects a starting year to search from, then clicks “Search for dissertations

on ProQuest”. This button will initiate a method that will pass the universities’ proquest search

name, the last name of an advisor, and other appropriate parameters and feed them to the

proquest site through the agent. The agent will then submit the search and the results will be

displayed through Internet Explorer.

Once the results page is up, all the user has to do is read from the search results, which

dissertations they want to capture information about. In the future, the results can be more

specific on subject/ author etc, but for now, the main functionality that the customer wanted was

the ability to see all dissertations at a school that were advised by a particular person.

When the user sees a dissertation he or she wants to save, she will click on the abstract link, go

back to the excel form, and click “save dissertation title and link”. Save dissertation will parse

through the open page on the Internet Explorer window and through the agent, save the title,

author/date/etc, and a hyperlink directly to the dissertation on proquest. This information is

inputted into the “dissertations” sheet of the excel file on the next available row.

With the excel forms and browser automation, the task of discovering which dissertations

thousands of professors have advised can be accomplished in a fraction of the time. The system

will also save time with the automatic scraping of titles and links to excel.

2.3 Learning and conceptual difficulties encountered

Most of the difficulties I encountered were with using the IE agent to automate the search on

Proquest. The agent was initially setup to create a new agent every time it was run. What I

needed was an agent that would stay as a live variable after a sub procedure is run. That way the

user can navigate in IE and then go back to excel, click a button, and have excel use a handle on

the IE instance to perform more automation.

Needing excel to keep a handle on the IE object made debugging very difficult because every

time there is an error, Excel loses its module level variables and the process must be started again

from the beginning. Through breakpoints and tedium I was able to preserve the agent object and

continue its use between sub procedure calls.

Another issue I encountered was changing select boxes with javascript events and clicking tags

without IDs. Some select boxes were loaded with a javascript “on change” event that changing

their value failed to trigger. My work around ended up being manipulating the url parameters to

have the same effect as the javascript event.

Some of the submit buttons had no IDs and the only way I found to identify them was though a

tag attribute and value pair that was unique. So I added a sub routine to the agent class that

searches and click a tag based on its type, a given attribute name and a given attribute value.

Research into the IE object helped me to achieve this as shown in figure 5.

Fig 5, VBA code to click a tag based on a tag name, attribute, and attribute value

