
Trevor McEwen

MBA 614 Final Project

Executive Summary

My project was not done for a business, but to help me in my calling as a Sunday school teacher
in my ward. I have noticed that when the students read the lesson materials before coming to
class then there is much better discussion and learning that takes place. I think that in general
everyone wants to read, but with our busy lives we sometimes forget. I have tried to send out
reading reminders at the beginning of each week, but I also tend to forget to do that and when I
do remember it takes time to actually find the links and write the emails.

My project seeks to use user forms to make sending a digital reading reminder quick and easy. In
addition to sending reminders for Sunday school I built in the ability to also send a reminder
about the Priesthood or Relief Society lesson that will be taught that week. The system requires a
one-time setup to input student information (name, email address, phone number, classes
attending, and contact method preference) and information about the ward and teaching material
(annual Sunday school topic, when the ward has stake conference, etc.). After that information is
entered into the system then the user only needs to open the spreadsheet, take a quick look to
make sure the information looks accurate (it will update automatically based on the date) and
press the send button. There is also an ability to adjust the message that is sent out each week (so
you can wish everyone a Merry Christmas in the same email).

Implementation Documentation

There are three main parts of my project that I built:

1. Forms – The forms were used to collect meaningful data to determine class schedules.
Here is a list of information that I gathered through the forms and why it was meaningful:

a. Conference Dates – Since every ward will be unique as to when they will not
have the regular block schedule it was important to request information from the
user about when their stake conferences will be held. Some wards also choose to
not have regular meetings on their ward conference day, so this form allows users
to add as many “skip dates” as they need. The “skip dates” can also be removed if
needed. Once entered the “skip dates” are recorded to the workbook so that the
user doesn’t need to enter these each time.

b. Manuals – There is a combo box on the form that allows the user to select the
Sunday school manual from a list of the regular classes (Book of Mormon, New
Testament, Doctrine and Covenants, and Old Testament). This information is also
stored to the workbook to be used later when the specific lesson information is
pulled from the internet.

c. Class Members – A separate form was created to gather information about
individual members of the ward. The form includes fields for their first and last
name, email address, phone number, preferred contact method, and which classes
they are members of. The cell phone was included for possible functionality of
being able to choose whether to send them an email reminder or a text message
reminder. For now the functionality is only for email. There are check boxes that
will indicate whether or not they are a member of 4 classes (Priesthood, Relief
Society, Sunday School, and Gospel Principles). The idea is that each member
can receive one email that has links to all the reading they need to do for that
week. All of this information will be recorded to the workbook so that the user
only needs to enter it once.

d. Personalized Message – This is the message that will be sent out via email. There
are markers for member’s first names and the classes that the member will be
attending so that each email sent out can be personalized to an individual member.
This message is also stored to the workbook, but can easily be edited within the
user form if needed.

e. User Information – There are fields where the user can input their email address
and password for the email that they would like the messages to be sent from. The
email address is stored to the workbook for convenience sake, but the password
needs to be entered each time. In future iterations it would be easy to make a
check box so the user could decide whether or not to save their password in the
form.

Once all the information is entered into the form there are other fields that provide
feedback to the user. Here is a list of these fields and their functionality:

a. Date of Lesson – This is a combo box that shows the date of the upcoming
Sunday. This is automatically computed in the VBA code so the user does not
need to adjust it, but does have the capability of changing the date in case the user
would like to send a reminder 2 or more weeks before class.

b. Sunday School Lesson and Topic – This is a combo box that shows the Sunday
School lesson for this coming week. This is also automatically calculated based
on the user’s prior inputs. Just as the lesson date, the user has the ability to choose
another lesson if they desire.

c. Priesthood/Relief Society Lesson & Topic – This is the same as the Sunday
School Lesson and Topic except it is for the Priesthood and Relief Society
Manual.

On the next page there is a screenshot of the forms.

2. Web Scraping – Originally I was going to use this tool to pull data (like member contact
information, stake conference dates, and lesson schedule information) directly from the
lds.org website. The more I talked to people in my ward, the more I found out that the
information they had listed online was usually outdated or incorrect. So in the end I used
the web scraping tool to capture the list of lessons for each Sunday school manual and the
Priesthood/Relief Society manual. The way I have it set currently it will pull this
information down from the web each time the manual combo box is changed. Although
connecting to the internet and downloading the list of lessons and titles causes quite a
long delay, I felt that this method was the most dynamic and showcased the web scraping
ability. After pulling this information down from the web and with the information
entered into the user forms the calculations can be made to show what lesson is supposed
to be taught on which date.

3. Sending Emails – After compiling and combining information from the user forms and
lds.org then the user just has to push the big yellow button to send out individual emails
to each member in the list. Since the Priesthood and Relief Society manuals are only used
on the second and third Sundays there is likely to be empty spots in the lesson combo box.
If the send email button is pushed while the combo box is empty then there will be a
prompt asking the user to enter a URL for the lesson that will be taught that week
(sometimes it is a conference talk and other times it may be from the scriptures).

Discussion of Learning and Conceptual Difficulties

Of the three main parts, working with the user forms was by far the most complex part of the
project. This section of the report will go into detail about the difficulties encountered while
programming the project.

1. The most complex problem to solve was how to account for the days that there would
either not be any lessons taught (because of General or Stake Conference) or when there
will be a special presidency or bishopric lesson taught (as is the case for the 1st, 4th, and
5th Sundays each month). The difficulty stems from making the program dynamic enough
to work for any year and still be able to know which months have 5 Sundays. The
following code was used to recognize on what day a particular Sunday fell on:
If Weekday(skipWeek) > 1 Then
 skipWeek = skipWeek + Application.WorksheetFunction.Choose(Application.WorksheetFunction. _
 Weekday(DateSerial(Lessons.Cells(1, 1).Value, theMonth, 1)), 7, 6, 5, 4, 3, 2, 1) + (weekNo - 1) * 7
Else
 skipWeek = skipWeek + (weekNo - 1) * 7
End If

The code will check to see if the first day of any month is a Sunday. If the first day of the
month is a Sunday then it will be recorded, but if it isn’t a Sunday then the correct
number of days will be added to the date to calculate the first Sunday. In this way it is
possible to pinpoint any Sunday (1st, 2nd, 3rd, etc.) in any month.

2. After determining the dates of each Sunday of each month the next problem was figuring
out how to allocate the lessons for each class accordingly. The method that I ended up
using was first populating a worksheet with the dates of each Sunday in one column and
the lesson for Sunday School and Priesthood/Relief Society in the next two columns.
After populating without skipping any dates the program will go through and insert an
empty cell on the weeks that the normal lesson manuals will not be used. The difficulty
with this method is that the empty cells need to be inserted in order from the top down
otherwise the resulting lesson schedule will be incorrect. This also means that the list
containing the conference dates needs to be sorted before inserting those dates as well.
This also required some ingenuity because the conference dates were stored in a
worksheet in a row rather than a column (I used a recorded macro to figure out how to
sort a row).

3. In addition to the two points above it was generally difficult to work with multiple lists
especially when dates are involved. If I was to try this again I probably would try to use
arrays rather than storing everything in a worksheet and recalling it later. The way I
overcame the list difficulty was by liberally using “Do Until” loops.

4. The final and probably most important thing that I learned is how important it is to plan
out a structure before actually beginning to code. When I started the project I had a
general idea of what I wanted to do, but I hadn’t mapped out on paper how I was going to
accomplish it. Because I didn’t plan well there were many small problems that I
encountered that I had to “patch up” rather than solve completely. As a result my code is
not very eloquent and probably takes much longer to run then it would have had I
carefully mapped out the program on paper beforehand. It is basically like using duct tape
to fix your car (no matter what the problem); you can get by, but it looks horrible and will
probably lead to future problems where you need to use more duct tape.

Additional Elements for Future Iterations

Especially as I was coding there were multiple thoughts that came to mind of how I could further
improve the program. Many of these additions would have been great, but would have needed a
significant amount of time to complete. Here is a short list of some of these:

1. Ability to send text messages. I was hoping to be able to add functionality to send the
reminder in an email, a text message, or both. This wouldn’t have been too difficult to
implement, but the problem is collecting information about which carrier each person
uses would have started to get tedious. Also, it would have made for a long text message.

2. I wanted to add the functionality of being able to enter the unique lesson topics (1st, 4th,
and 5th Sundays) in advance rather than only adding the URL right as the message was
sent. The reason I couldn’t do this was how I had structured the lesson list to repopulate
each time the workbook was opened. The user could then input the future unique lessons,
but they would be written over the next time the workbook was opened.

3. I would have liked to have more interaction with the web. For example it would have
been nice to download all of the names and email addresses from the online ward
directory and automatically add them into my workbook. It also would have been nice to
have more interaction with the online calendar function on lds.org to possibly make a
unique calendar that would also be updated when the reminders were sent out. I think I
would have been able to do this, but I just did not have enough time (I had already spent
30+ hours on the rest of the assignment).

