
1

1.1 Executive Summary

Eastside Harley-Davidson in Bellevue, WA is the premier Harley-Davidson motorcycle dealership on the west 
coast. They are engaged in the sale of new and pre-owned motorcycles, parts, MotorClothes, rentals, and provide 
repair and maintenance service for their customer’s bikes.  The company compiles a daily business report from 
which managers base many decisions. The report is compiled from several different sources on a daily basis and 
often consumes 30 minutes, if not more, of an employee’s time to assemble and compute the data. The sources 
of the daily transaction information include an Excel file which is received through e-mail, an Excel file which 
is manually pulled out of their in-house database, and several other figures which must be entered by hand. This 
VBA project minimizes, to the full extent possible, the number of steps, clicks, keystrokes, and time an employee 
must use to collect and analyze the information and then e-mail it to the managers group. This project also al-
lows the user, at the beginning of each month, to reset the report with blank data as well as update the dates and 
goal information for each department.
       

1.2 Implementation Documentation
The reasoning
The first step was to simplify the UI for the end-user to make it possible for this 
report to be run by someone with little or no Excel experience. Consequently, 
this ruled out being able to bury the macros in the Developer > Macros (alt + F8) 
menu. To organize the chaos into a simple menu, an “Admin” sheet (see figure 1) was created at the end of the 
worksheets with three simple buttons to perform various functions.

The original daily business report consisted of three Excel files that were not 
linked. One file was the primary data for the overall store and each seperate 
department that was sent to all of the managers. The other two files were further 
breakdowns of the Parts and MotorClothes departments which were e-mailed to 
their respective managers. I initially considered building an Excel file that would 
strictly be code and would select and populate the three target Excel files with 
information. This proved to be conceptually much too complex, unnecessary, and 
a redundant use of multiple Excel files. So the first step was to consolidate, and 
rebuild from the ground up, all of the sheets and information from the previous 
three individual Excel files into a single file (see figure 2, below). Some functional-
ity at the front-end needed to be maintained so that the user could update cells 
with information. Cells were colored blue that were intended to be manipulated 
by the user. Any other cell was not to be changed. Conditional formatting (see figure 3, right) of the “To hit 
track” and “To hit goal” cells of column “C” was added to enhance the overall readability of the report. 

Figure 1 - Admin Tab

Figure 2 - Example of combined excel sheets

Figure 3 - Cond. Format



2

Generate a new report
Generating a new report for the month appeared to be the first function prudent to develop. By clicking the “Ad-
min” sheet and then the “Generate new daily business report button, (see figure 4, 
right)” one could pull up a user form with which to create a new, properly formatted 
set of worksheets with the correct dates, goals, and blank data cells. The user form 
(see figure 5, above) consisted of 18 fields designated for specific store goals. These 
goals came from various sources, including but not limited to, verbal input and e-
mail. Consequently, their entry could not be automated with VBA. Many of the main 
department goals could be automattically inputted into the form by clicking the “Goals” command button on the 
user form and navigating to the annual store goals Excel file. This allowed for the analyzation and extraction of 
the majority of the goals for the store, leaving only a few department-specific monthly goals for manual entry. It 
was also important to have the proper dates show up on the report, 
so a text box was created in which the first day of the month being re-
ported was to be inputted. An invalid date would not be accepted and 
a message box would inform the user of such. Occassionally not all 
of the goals were known by the first day of the month so their values 
could be left blank. Finally, executing the form erased all previous en-
try data from the  sheets, creating a new, blank daily business report. 

There were several interesting functions that occurred as a result of 
generating a new report. First, the dates of each sheet extended to the correct number of days given the month of 
the the date initially entered. This happens across all sheets. It also sets the correct number of days to each of the 
21 graphs and also updates data of each “goal” and “tracking” cell (see figure 6). The lines in the graphs represent 
the goal and also the general direction the department is headed for the month. Finally, the current track, daily 
sales to hit goal, % of goal to date, and % of time expired figures in column “A” of each sheet are also properly 
calculated off the number of days counted from the date originally entered into the “Generate new daily business 
report.”

Figure 4 - Button example

Figure 6 - Dynamic dates

Figure 5 - Generate new daily business report form



3

Filling in the details
Once a new, blank report was generated, the next step was creating a simple form to populate each of the fields 
on a daily basis (see figure 7, above). This consisted of a date for the current day the data was being entered, and 

19 text boxes  which would populate the respective cells across the work-
sheets. The first feature of the “Daily Report Entry Form” was the date entry 
(see figure 8). The date was validated conditionally upon whether or not it 
existed as a date in the month being reported. The form would inform the 
user if an invalid date had been submitted upon execution of the user form. 

The next logical step in the creation of the form was selection of the F&I log. The F&I log contained month-to-
date data of bike sales and financing information. Clicking this button required a validated date in the date text 
box previously mentioned. Failure to do so resulted in a reminder to enter a date. Once done, clicking the F&I 
log opened a file selection dialogue that allowed the user to navigate to the F&I log, an Excel file that would have 
been received via e-mail at the end of the previous business day. Cells in the F&I log containing the previous 
days’ bike sales, including new and used, as well as F&I information would have their cells filled with color for 
easy review if desired. The calculated figures would be automatically copied into the seven designated text boxes 
on the user form and the F&I log would close.  

The next step was to then analyze the previous day’s end-of-day report for more numbers. Processing this report 
did not require a date to be entered as it only contained one day’s data exported as an Excel file from the in-house 
database. Just like the F&I log, it processed a selected file, highlighting cells from 22 specific categories in four 
categories (columns) for later review if warranted, placed the calculated figures into the proper parts department 
and other text boxes of the user form, and saved and closed the end-of-day report. The same procedure, with its 
own command button, applied to Emerald City, a small shop owned by the dealership.

The final step was manual entry of data into the remaining text boxes. This data came from disparate singular 

Figure 8 - DBR Form

Figure 7 - DBR Entry Form



4

reports generated from the in-house database and therefore the process could not be 
automated. Execution of the form, or clicking “Make It So (see figure 9),” placed the 
data from each text box into their respective locations across the sheets. If a text box was 
left empty it was added to the report as a 0. Each graph and calculation across all sheets 
were dynamically updated with each entry.

Sending it out
Finally, the “E-mail to managers” button (see figure 10) on the “Admin” sheet allowed 
the user to send the current daily report out to the managers group with the click of 
a button, assuming that the Microsoft Outlook Object Library has been referenced in 
Excel.   

1.3 Conceptual Difficulties
Strings vs Numbers
One of the first difficulties faced in this project was dur-
ing the process of coding the “Generate new daily busi-
ness report” button. Numbers were to be initially entered 
into the various text boxes as numerical dollar figure goals for each department. Unfortunately, Excel reports an 
error in the actual spreadsheet cell stating that the number had been formatted as text. After extensive searching, 
I learned that the solution became as simple as adding a “* 1” to the end 
of the text box variable (see figure 11), automatically converting it to a 
number. 

Dates, Dates, Dates
The next conceptual problem came when attempting to code the “Daily 
Report Entry Form.” One of the objectives was to validate the date to 
ensure it was a date that already existed on the spreadsheet. This process 
turned out to be excessively difficult as the potential combinations of 
strings, numbers, and dates and their comparisons can create a multi-
tude of VBA errors. Eventually, a solution was worked out where if the 
text box “value” was compared against the current dates in the cells then 
it would identify a correct date. However, incorrect dates continued to 

Figure 13 - GetOpenFilename example

Figure 10 - E-mail 

Figure 11 - Convert numerical string to number

Figure 12 - Date validation

Figure 9 - Make It So



5

throw runtime errors and therefore an “On Error Goto” statement was added in which the sub-procedure would 
simply be exited upon the first invalid date (see figure 12). It was a seemingly elegant solution to a very technical 
problem as Excel has numerous methods of handling dates. 

File > Open!
The next big challenge was to add the ability to allow the user to select a single Excel file to be analyzed. I met 
with the TA for ideas but found no simple solution. I needed something that would open just a single file and 
allow it to be manipulated by VBA. After turning to Google for quite some time, I came across the Application.
GetOpenFilename solution (see figure 13). I was able to tweak the code to be implemented into my project in 
two places and it worked wonderfully.

Format that date
Another conceptual objective was to 
have uniformity of date formatting 
across the worksheets. Most every cell 
depends upon the dates in one form or 
another. The idea was that if everything followed the (X)X/(X)X/XXXX format, where (X) is never entered as a 0, 
then hopefully future errors with the dates would never be an issue. Since dates across all worksheets are propa-
gated from first of the month date in cell E2 of the “MU New” sheet, it seemed prudent to ensure that it would be 
in the format as mentioned. The “Generate new daily business report” user form has a text box in which to enter 
the date of the first of the month. Upon exiting that box, the format of the date was automatically converted to 
the proper formatting (see figure 14).

Sections, Categories, and a Few GoTos  

Another great challenge in this project was processing the end-of-day report. Initially it was difficult to concep-
tually grasp what needed to be calculated. Essentially there were three  sections to the report for the Parts depart-
ment: retail sales, repair order sales, and major unit sales. Each of the three had a shared list of sales categories 
that are specific to the Parts department. Any or all of those sections and categories may or may not be present 
in a given day’s report, but, if present, they had to be accounted for accordingly. Daily service dollars were also 
calculated from the report on a separate set of categories spanning all three sections, if present. It was a daunting 
task. 

The problem was eventually solved with 
the implementation of a series of If...
Then...GoTo statements (see figre 15). 
The report begins the first of the three 
components of the end-of-day report 
and, if present, performs the GoTo upon 
hitting the beginning of the second, or 
third, section. The report will go straight 
to the second section, or third, if either 
the first or second components are not 
present in the end-of-day report. The dai-
ly service dollars calculation was insensi-

Figure 14 - Date formatting

Figure 15 - GoTo example



6

tive to which component was being analyzed so it runs through the entire report looking for specific categories 
regardless of the component. As an added bonus, all the cells that get selected also receive a cell fill color and the 
file is saved so that a manager can review the end-of-day report to ensure the program ran properly if desired. 

Other features
Plot Data
There were a couple of other neat features 
that are worth mentioning but not VBA 
related. The data points for each graph were 
dynamically calculated on a hidden sheet 
called “Plot Data.” There were over 2000 
formula cells on that sheet used for calcu-
lating data points on the other worksheets 
(see figure 15).       

Parts and MotorClothes
As initially mentioned in section 1.2, the report was consolidated from three different Excel files down to one. 
So now the numbers for the MotorClothes sheet are calculated off of the sales and margin data for the Motor-
Clothes salespeople. The old method was to run the numbers for the MotorClothes salespeople in a single Excel 
file and then manually copy the sums over to a separate report for the managers group. It was also a similar 
process for the Parts department. 

1.4 Initial Feedback
“Outstanding job.” - Todd, General Manger

“I’m REALLY glad you’re involved in this. Thanks!” - Sebastian, Parts Manager

“James has done an amazing job with the report. He has really simplified the data aggregation process.” - Joe, IT 
Manager

“The report you built is a beautiful thing.” - Joe, IT Manager

Figure 15 - Plot data example


