

Wildfire Content Generator 1.0

Mike Karlsven

ISYS 540

April 13, 2011

Executive Summary
My company has a need to easily integrate existing content on the web into new websites.

This could be product data, directory listings, or even blog postings. The data is used to

generate content for the purpose of search engine optimization (SEO) and will be crawled

by the search engines to improve page rank for our customers. The data being gathered is

either public knowledge or product data which our customers either own or have access

to legally to sell the products.

The Excel tool has two parts: the data collector and the database connector. The data

collector is operated automatically (statically set for a single site, but able to be altered

for additional sites by just changing a few variables) by using a button on the user form

(see Appendix Exhibit 1). The program is currently configured to hit a website and

gather dentist information for each city in every state in the US and compile the

information in the workbook organized by state. When the collection is complete the

user will receive an email notifying them that it is complete (this is optional if the user

chooses to enter their email address). The database connector portion of the program

allows the user to select a state (sheet) of the workbook to be uploaded to the database.

The database information is entered by the user including username and password,

database server, and database name. The program connects to the database and loops

through each entry on the sheet chosen to upload and inserts the information into the

database. The database is set up to have categories which are city names. Whenever a

new city is encountered in the data, a new category is created in the database and the

entries that belong to that particular city/category are labeled as such when added to the

database.

Implementation Documentation

User Form (UserForm1)
The user form (Appendix Exhibit 1) was created using Excel’s design mode. The form is

initiated automatically when the workbook is opened by adding code to the

ThisWorkbook object. It can also be opened via a button on Sheet1 of the workbook.

The user form is the primary way for the user to interact with the program. It allows the

user to enter the following information:

• Database settings (Database Uploader)

o Database Server

o Database Name

o Username

o Password

o Select sheet to upload

• Options Settings (Collector)

o Email address (optional)

o # of Cities to gather

o Hide Browser Option

The form allows the user to customize their experience with the program. The Hide

Browser checkbox allows the user to decide whether or not to display the browser during

data collection, allowing them to either monitor or not monitor the progress as it is

running. The # of Cities option allows the user to decide how many cities per state

should be looked at. This was added primarily for troubleshooting purposes and is a

quick way to see the program in action by limiting the number of cities to look at per

state. When the program was run allowing all cities to be gathered, it took well over 10

hours to complete the job, but did so flawlessly. This leads to the next functionality of

the data gathering which is the email address. Because of the potential delay in

completion of the task of gathering over 60,000 records, the email address is used to

notify the user when the job is complete.

The database settings are fairly straight forward. In order to get the program to connect

to the database the MySQL ODBC 5.1.8 driver must be installed and configured correctly

on the user’s machine. The program can connect to any MySQL database it can reach

with the proper credentials, but the tables and fields are hard coded into the program so it

is fairly limited in functionality to work with a specific database table structure that was

defined for the project. For future revisions of the program a more flexible database

structure will need to be implemented (perhaps by utilizing the header row of the

worksheets to identify table/field names).

The form also contains buttons to Start, Stop, and Resume data collection as well as reset

the data existing in the workbook. The Start button begins the data collection process by

calling the data_collection sub procedure. When the data_collection sub procedure is

running the start button becomes the Stop button. The stop button will interrupt the data

collection process at any point. If data already exists (the stop button was pressed) in the

workbook, then the Resume button is displayed and if pressed the data collection will

pick up where it left off with the last city worked for the last state worked.

If required data is missing in the form then the user is notified via messages displayed on

the form as well as highlighting the fields that are in violation of the requirements (See

Appendix Exhibit 2). The user cannot continue until the violations are resolved.

Data Collector (Module1)
The data collector is implemented using the agent class provided by the course instructor

to manipulate the Internet Explorer browser. The agent is used to start an Internet

Explorer session and navigate to a given website address. Once there, the agent searches

for all of the states on the page and stores the links to each state in an array. This array is

then traversed one state at a time and the agent navigates to the state URL stored in the

array. The state pages contain a list of cities that are in that state. Another array is used

to store each city name and URL. The program loops through each city and the agent

navigates to the city. Once on the city page, a list of records for that city is displayed.

The agent gathers each record and copies the information onto the worksheet one row per

record. Once all of the records have been recorded on the worksheet, then the agent

navigates to the next city. Once all of the cities have been hit for a state, the loop then

starts on the next state and the process starts over collecting all of the cities and each

record in each city. The iterations are controlled via nested While and for loops.

In order to accommodate the resume functionality, the current city being worked on is

stored in a cell on the state’s worksheet.

Database Uploader (Module2)
The database uploader portion is very custom coded for a particular set of tables in my

company database. The user selects which worksheet to upload to the database via a

combo box on the user form. The user also inputs the database connection settings

including username and password. The first thing that happens is the connection to the

database using the information provided by the user via the user form. Upon successful

connection to the database, the records are inserted into the database tables. The way the

database is configured, each city is considered a category. Therefore, when each record

is checked, if the city is a new one in the list, then a new category must be created and the

category id must be retrieved from the database to properly categorize the records. This

is done by comparing the city name to the previous record’s city name. If it is different,

then a new category is created using the current record’s city name. The ID is retrieved

using a MySQL command [last_insert_id()]. The records are uploaded one cell at a time

into the proper locations in the database. In total, there are 5 queries to the database per

record in the spreadsheet. To upload the 1160 records for that state of Utah, it took

roughly 5-7 minutes.

Difficulties & Learning Experiences
There were many moments during this project that caused me to pause in my coding and

really dig for answers. Most of these experiences came while building the database

uploader module. The first roadblock was in the database connection string. I found a

tutorial online that helped me with the connection string, but I was still having an issue

getting connected correctly. It turned out that I had my script correct on the Excel end,

but my server was not allowing connections from my IP address.

Another one of the great issues that I dealt with during data collection was that of getting

all of the data to be gathered up correctly. I ran into an issue while gathering the info

from multiple columns of data. I was able to gather info from the left column, but not the

right column. I found that the text I was searching on was different for the right hand

column. I had to overcome this by adding a second set of data parsers and looped this by

row of data. This corrected my column issue, but it also introduced a bug that I was only

retrieving the info for every other row of records. I found that my DO loop was

incrementing the counter as well as I was manually incrementing the counter.

The third issue that I encountered was during testing my code, I found that I wanted to

stop the program early because I had seen what I needed to see, but in doing so, I was

never able to see the program progress past the first few cities in the state. I didn’t want

to wait around forever to see it finish. To overcome this, I added the # of Cities field and

the Start/Stop/Resume button features. This allowed me to do much better testing as well

as added functionality to the user experience to not have to wait for a complete record set

in one sitting. The resume feature added a lot of flexibility to the user in case of a data

interruption, the user no longer had to start over from scratch on the data gathering.

Appendix

Exhibit 1: User Form

Exhibit 2: User Form Errors

