

Approximate Find

A Tax Associated Best Friend

Jason Whiting

4/13/2011

Executive summary of the project

Approximate Find is an Excel Add-in that allows for specialized numerical searches. I originally

conceived approximate find when trying to help a friend, a fellow PwC associate, work through

cooperate and individual tax workbooks. You can search for specific values in Excel but this

only allows for string comparison searches. Many times when working with different accounts

and ledgers you want to find a number near a certain value. You may also come across a line

item that is the aggregate of other cells and want to find which cells add up to that amount.

Approximate Find allows you to give a numeric value, different tolerances (percentage, fixed

range), and the number of numeric values you would like to find that add up to your target value;

these features greatly extending the search capabilities of Excel.

Implementation documentation

In explaining my solution I would like to detail four main components.

• Add-in • GUI • Data Gathering • Data Searching

Each of this components

Add-in

“Approximate Find” or “Tax Assist” are two names I have given to the add-in that I have

created for Excel. Approximate find is stored as an Excel add-in file or .xlam. To use it you

must go to File->Options->Add-ins->Go and browse to the .xlam file. Moving this file after

adding will break the functionality so it is important to store it somewhere permanent

(e.g. not your desktop). Once loaded there are two ways to access the Approximate Find

GUI and therefore it’s functionality.

1. Ctrl + G - Pressing this key combination will immediately bring up the Approximate find GUI. So

instead of Ctrl + F, just go over one to ‘G’ and you can do a numerical approximate find.

2. Ribbon Icon - The Ribbon Icon is placed under the Home tab so that it can be accessed without

fumbling around between tabs.

GUI

Once loaded, Approximate Find will present you with a GUI (Graphical Unser Interface) that will allow

you to search. In the GUI you will find a box in the top left corner to insert you search term. You are

then allowed to choose your search range details. You can either have a percentage or absolute search

range. For example you could search for any number within 3% of your search term or 1,000 above and

below you search term. You can also narrow your search scope between the current page and all

worksheets. Finally, you can choose if you want to find a composition of 1, 2, or 3 numbers that add up

to a value within your specified range.

Figure 1 - Ribbon Icon

In displaying your results a list box is populated on the right side. You will find first, the value located in

the cell, the sheet it is on, and its cell address. For each grouping you will see either a ‘|’ or’ ---‘. These

well alternate every other result unless there are groupings of 2 or 3. In that case, the cells are groups

by either symbol.

Data Gathering and Data Searching Methods

There are a total of six methods, one module, and one form that operate the primary functionality of

the Approximate Find tool.

Code / Approximate_Find()

The code module is very basic. It is the module that contains that macro that initiates the GUI form.

The add-in contains its own hidden worksheets and also its own hidden macros. When the Approximate

Find add-in is not set to “isAddin” from the developer window then these worksheets and relevant

options are exposed in the main Excel window. In the more complicated search methods I use these

hidden worksheets to organize and parse through the data. Also, it is here that I assign Ctrl + G to the

Approximate_Find() sub-procedure (macro). By default these worksheets, more accurately, this

workbook is hidden.

Search Form

The SearchForm is where the GUI and all of its elements are created and laid out. By going to the code

view while looking at this form you will find all the methods that run this tool. When looking at the GUI

interface the most critical and complicated piece is the list box on the right. Search results are displayed

in the list box as separate list items. Each list item comprises a row in the list with five possible columns.

The best feature of the box is that on clicking a list item it has Excel make the current active cell the

address listed in the list item. This features allows you to quickly browse to the results in the context of

the workbook.

Do_Search

The “Do_Search” method is what is launched when the “OK” button is pressed. In this method

everything is prepared for the searching process. It first sets up a

timer so that the time it takes to process the search can be

displayed. This method also reads all the values submitted in the

GUI form. Based on the user’s inputs one of the following three

methods are called: “appx_find,” “appx_find_2_cells,” or

“appx_find_3_cells.”

Appx_find

“Appx_find,” this is the meat of the approximate find tool. Though it isn’t the most complicated of the

methods, it provides the central functionality of the add-in. “Appx_find” first collects all the numerical

values spread throughout either the current worksheet or all worksheets depending on the user’s

specifications. Using the range object method “specialCells” I was able to pull out all constants and

formula values from the worksheets without having to parse through each cell. The constants and

formula results are stored in two separate ranges. I then check to see if either is empty. If so, I just use

the one with values to do my searching. If both have data I perform a union on the two data sets and

work from there.

The next part of the code is to perform either a search with a percentage or absolute range. It runs a

“for each” loop in either case. The logic it checks the current value to see if it is within the search range.

If it is, a new item is added to the list box in the GUI specifying the value, the worksheet, and cell

address; if no results are found it will populate the list box with the appropriate notification.

Appx_find_2_cells and Appx_find_3_cells

The “appx_find2_cells” and “appx_find_3_cells” were probably the most fun to program. They are very

similar to the “appx_find” method; however, they have nested loops and optimization for finding

multiple cells that add up to the desired range. The most interesting part here is that I work with hidden

worksheets belonging to the add-in so that I can have the powerful information navigation features of a

worksheet, yet work transparently to the user. For each of these I copy all the information out of the

range object into a worksheet called “data.” I could not find a way to easily parse through the range in

memory. With the 2 cell search, for each value in the list I run another loop to add it to all the following

values in the list. Having the information in a worksheet gave me the simple data addressing

functionality you would find in an array that I could not find in a range object. In the 3 cell search, it is

basically the same thing; however, there is third loop to check all following values with the first value

pairing. I was able to increase performance significantly by cutting out the third loop if the first to

numbers were already larger than the specified range.

Discussion of learning and conceptual difficulties encountered

Gathering the Data

The first thing that I tackled with my project was how I was going to search all the data. I knew I needed

a way to gather all the numerical data, whether explicit or derived (e.g. a formula) and aggregate it in

some form that was easily parsed for searching. Some of my first experimentation, with my basic

knowledge of VBA, was of course to read cell by cell on each worksheet and evaluate whether or not the

value was numeric. This method, as expected, was very inefficient. The culmination of my efforts is the

few lines of code you see in figure 2. The key is that you can assign an entire worksheet to a range and

then use the SpecialCells method to pull out the numeric values for constant and formula cells. Once

the constant and formula cells are gathered into a range a union can be ran on the two ranges forming

one single range with all numeric data.

Figure 2 - Numeric Data Gathering Algorithm

Creating a GUI

Creating the GUI was an interesting challenge. For the most part it went pretty smoothly. I was able to

figure out man what I needed with little effort. Making Excel move the active cell to the selected item

from the list box was the most useful. Speaking of the list box, it was quite possibly the most annoying

thing to work with. My number one frustration was that I wanted to color different row backgrounds so

that I could show groupings. Unfortunately, as far as I could find there is no way to set the background

of an individual item in a list box—super annoying.

The Button that Pushes my Buttons

This is still my biggest gripe. I have approached the issue from many angles

and I still can’t remove the error. I have created a ribbon icon to launch my

application. However, each time I launch it, I get this “400” error. I have

found the error means that Excel is trying show a form that is already

visible. I have done some testing and for some reason when clicking the

button it makes Excel try to launch its referenced method more than one

time causing this error. Running the method it references separately does not generate the same error.

In theory, pressing “CTRL + G” is doing the exact same thing.

Update: I finally solved the problem finding a working xml file and tweaking it. I found the special

sauce. I need to have “(control As IRibbonControl)” in my macro’s parameters.

Wrap-up
This project has been a really fun exploration of Excel for me. I started maybe five or six different side

projects before resting on this one. I really like making tools that solve an immediate problem.

Additionally I was able to learn two things that I wanted to know better—how to create an add-in and

how to customize the ribbon.

