

11

MBA 614 – Final Project
Mutual Fund Analyzer

Everett Crane

1 | P a g e

Executive Summary

Description

Before returning to school for further education, I participated in my employers 401K plan, which

offered several dozen different funds to choose from. I often found myself frustrated with the

seemingly endless list of funds that I had to choose from. A common measure of overall mutual fund

performance is to compare a particular mutual fund’s return with the S&P 500 index. With several

thousand mutual funds to choose from, it can be a daunting task to go through each fund individually

and determine whether or not the fund is right for you. As an investor, it is important to balance cost,

risk and performance when choosing a mutual fund.

System Overview

To help assist me in this decision, I chose to build a model that will pull in mutual fund information

based off of the user’s input of mutual fund ticker symbols. Once the data is pulled, the user can then

customize his portfolio by selecting the funds that meet his criteria along with a desired investment

amount. After the funds are selected, the user can then choose to maximize the portfolio’s return or

minimize the portfolio’s risk simply by using the built in user forms.

Implementation documentation

To implement the functionality of my mutual fund model, I divided the VBA programing task into three

overall main parts:

1) Data Retrieval

2) User Form Functionality

3) Solver Capabilities

Data Retrieval

Once a user opens the Excel file, the user first begins by entering in mutual fund tickers below the “Fund

Ticker” heading in column B (See Figure 1). The ticker symbols are displayed in blue font, identifying

input information. Black fonts represent data that are not to be changed.

Figure 1 – Mutual Fund Ticker Input

2 | P a g e

Once the user has inputted the desired amount of tickers, the “Run Query” button is then pushed. The

assigned VBA code is then initiated which automatically retrieves the data from Yahoo! Finance based

off of the corresponding ticker symbol (See Figure 2).

Figure 2 – Data Querying

To create this functionality, I created several sub procedures to execute the necessary code. The first

sub procedure creates 3

new sheets each with a

web query querying a

different web page within

Yahoo! Finance (part of

this code is shown in the

figure to the left). I

attempted to pull

information straight from

Morningstar.com since

Yahoo! Finance gets its

information from Morningstar.com, but the actual formatting of the data was much easier with Yahoo!

Finance. From this procedure, I created a loop that will continue through all of the tickers that are listed

on the “List” tab in column B. The next sub procedure goes through all three tabs and copies the

3 | P a g e

relevant data. Several lines of code had to be created to search out each piece of information that is

listed in the column headers.

After all information is inputted for one ticker, the

code then goes into a loop and repeats until all

information for all tickers is complete. Once the

loo p finishes, the code then deletes the

worksheets that contained the three web queries.

This code is shown at the right.

To get the functionality that I desired, I included

error handling in the code that would skip a line of

code if an error was returned. This was particularly

important when certain criteria were not found

using Excel’s find capabilities. It is important for

the user to go through the data and identify

missing pieces of information. I am suspicious that

the cause of the missing information is because the

web query is not refreshing fast enough for the find function to pick up the necessary data.

The final sub procedure for data querying is designed to retrieve S&P 500 data which is used as a

benchmark the user’s portfolio. This sub procedure works in much the same way as the sub procedure

that gathers the ticker information on the “List” tab. The only difference is that the S&P 500 query pulls

only one ticker, IVV, which is an index fund created to match the holdings of the S&P 500 (See Figure 3).

Figure 3 – S&P 500 Data Retrieval

User Form Functionality

The most complicated part of my project was providing user form functionality. Once the user has

pulled all of the necessary information to create his or her portfolio, it is then time to create their

portfolio. The “Create Your Portfolio” button fires the code that generates a user form which is based

off of the data that was queried in the “List” tab (See Figure 4). The user can then select the desired

funds he or she wants added to their portfolio. The user form also allows a user to remove a fund from

the portfolio list. The tricky part to this code was creating a sub procedure that would not allow the

portfolio list to have any duplicate fund names, even if the user added a particular fund multiple times

(See Figure 5 for details).

4 | P a g e

Figure 4 – User Form Functionality

Figure 5 – Removing Duplicates From a List

5 | P a g e

Once the user selects the desired funds

and hits the “Create Portfolio” button,

an input box is generated that prompts

the user for an investment amount.

This input box will only accept a

numeric amount.

After the investment amount is established, the code then pulls the appropriate data from the “List”

tab. This part of the code was particularly complicated because I wanted the model to be dynamic and

automatically adjust to different portfolio sizes (See Figure 6).

Figure 6 – Dynamic Portfolio

Solver Capabilities

The last feature that I added to my model was to include the solver capability. Once the user presses

the “Maximize Portfolio” button, additional user forms are initiated to collect necessary information for

the solver. The fist user form is a form

that has two options. The user must

select one of the options, which is a risk

and return trade-off option.

6 | P a g e

Once an option is selected, another user form

then prompts the user to enter in an integer

that will be used to identify the number of

funds he or she wishes to diversify among.

Creating the code that will only accept an

integer between one and the number of funds

in the portfolio proved to be quite difficult, so

I have also included this code in the write-up

(See Figure 7).

Figure 7 – Dynamic Integer Check Code

7 | P a g e

After the user inputs an integer, depending on what option was chosen, either the risk or return option,

one final user form is presented. This user form specifies what cell will be the objective cell for the

solver to alter to achieve for the best results (See Figure 8).

Figure 8 – Setting the Risk/Return Objective Cells for Solver

When the user pushes the “Solve” button, the solver initiates and determines an optimal level of

allocation of investment (See Figure 9).

Figure 9 – Resulting Portfolio Allocation After Solver

8 | P a g e

Learning and Conceptual Difficulties

The whole project itself was extremely challenging and took much more time than I originally

anticipated. Prior to the class, I had very little programing knowledge. Probably the most frustrating

part was trying to get the code to do something relatively simple, yet not knowing exactly how to

compose the code. Often times I felt like I asked very simple questions to others who had better

knowledge than I did.

Overall, I struggled with the ## main areas while creating my code.

1) Trying to figure out a better way to pull data from the web. The Internet connection at BYU has

been extremely slow, which takes quite a bit of time to pull relatively little information. I asked

Professor Allen if there was a better and quicker way to pull the data from off of the Internet,

but he informed me that it was more of a network issue.

2) Creating a dynamic portfolio summary (located on the “Dashboard” tab). Conceptually the ideas

was simple, but creating the code proved to be quite challenging for me. I wanted to make the

Weighted Portfolio line to be dynamic rather than static, but accomplishing this took many lines

of code. I’m sure there are better ways to be more efficient with the code, but I just did not

have the time to really go for optimizing my code.

9 | P a g e

3) Creating a user input box that would only allow an integer between one and what ever the

number of funds were in the portfolio proved to be very difficult for me to create. This

probably took me a couple of hours to finally figure out. I came up with the idea to create 5

check flags that would be flipped if certain conditions were met. If one of the flags were not

flipped, then the whole sequence of code would be looped back again and the flags would all be

reset.

4) The final part that I struggled with was configuring the solver through user forms. I learned that

whenever you use user forms, your project becomes significantly more complicated. I should

have learned my lesson from our user forms assignment and not have implemented them into

my project, but all well.

Overall, I learned a ton during this project, even though it was a bear. This assignment really did give me

confidence that I can handle my self in a small way when it comes to VBA.

