
Aaron Fisher

4/13/11

VBA Semester Project: Email to Spreadsheet Parser

Executive Summary
For my semester project I began by addressing a business problem in the place where I work, Seven

Peaks Water Park. As an employee in the IT department as well as the Point of Sale Specialist, I receive a

lot of emails from automated devices that fill up my inbox, as well as emails from various managers

requesting timely information that may go unnoticed if my inbox fills up quickly with less important

messages. One particular email that I receive several times a day is generated from our website with

customer information when a patron requests information about “group events” (i.e. a family party they

would like to hold at a discounted rate).

These emails have been collecting in my inbox during the off season and will eventually need to be

passed on to an employee responsible for contacting each one. The preferred method of distributing

contact information at this business is spreadsheet form, so I created an outlook marco in VBA that

iterates through my outlook inbox and finds automated message of this type, then parses the contents

of the email and extracts the important information using regular expressions and appends it to an excel

spreadsheet so that no person is left un-contacted and the process of contacting each person is greatly

facilitated by the fact that its presented neatly in a spread sheet and no one has to transfer it from

emails to user-friendly form.

*In addition to this business solution, I challenged myself a bit further by creating an excel-based

computer game done entirely in VBA. I named this game Rocket Town; the objective is to navigate a

rocket around obstacles that are randomly placed in your path. This application presented many

unforeseen challenges and proved to be an excellent learning exercise.

Implementation
This section is a more detailed explanation of the business problem and the solution – but still on a high-

level view. For low-level detail of how the solution works on the programming level, see the “Write-up

Detail” section.

The problem:

This figure is a screen shot of my outlook inbox. This figure demonstrates the problem visually, which is

that eight out of ten of the visible emails at this particular time are “Groups Info Requested” emails,

which are automatically generated from the website. You can see that there is also a 2pm meeting item

which contains important information about a meeting scheduled that same day. By receiving so many

auto-generated request items, I lose the valuable ability to either glance at my inbox to see important

and timely information, or to monitor incoming emails through desktop notifications. It’s essentially the

same problem as SPAM, only all of the information is important and represents a possible revenue

source for the business, so it must be processed. There is an easy solution to the email crowding out

important messages, which is to create a filter and have outlook sort the messages as they are received,

which I may still implement in the future, but this is not a complete solution.

If the email where categorized so that it didn’t interfere with my regular emailing activities, the

information in the email still needs to reach the right person. (I should mention that I receive the emails

only because I built the webpage that generates the emails and at the time, we did not have an

employee is this position and will not have one until the park is open for business again.)

Here is a sample email auto generated by the website to put this problem into context.

As you can see, the email contains essential information for contacting the individual, and dozens of

these emails are generated each week. To forward these emails on to the person or persons responsible

for contacting each individual means managing hundreds of individual files, and iterating through each

email as the employee contacts them, and then recording related notes with in another file. Obviously,

this information could be presented in a spreadsheet where it could be handled as one document.

Looking at the sample email you can see that email template was structured cleverly (by me) so that

information could later be extracted out of it.

I decided that the implementation of regular expressions would be an appropriate way to extract the

data so it could then be placed into an excel spreadsheet. Adding a regular expressions library, I was

able to extract the information with some very simple regular expressions shown in the next figure.

Using the regular expression pattern I was able to extract all of the important information from each

email and store it in a variable within the macro. I then used VBA from within Outlook to instantiate

excel, open the spreadsheet file from network storage, and write the email information into fields in the

excel spreadsheet with additional information for the employee responsible for contacting each person.

This is what the actual spreadsheet looks like. To protect customers’ personal contact information I only

displayed some sample test data that came from the website, was pulled from Outlook, and written to

the spreadsheet.

I also used the VBA script to mark each message as read and then move it to a different folder where I

can manually retrieve it in the event that some mishap occurs in the script.

That’s the context of the solution. I’ll explain in more detail the actual programming elements of the

script in the following sections.

Discussion of Learning and Conceptual Difficulties
This project was fairly simple. For that reason I believe this was an excellent and very appropriate

application of VBA. I did run into several difficulties while developing this script, however, because they

were not conceptually very difficult, I chose to do an additional project to supplement this one.

In the game I developed I ran into a whole new world of problems and programming concerns that I had

never dealt with in my business orientated programming education. Those challenges are documented

separately.

In this application, the first major challenge I ran into was dealing with the outlook application schema

which is different from the excel layout that I’ve used throughout the semester. Conceptually, I had to

move from using workbooks, sheets, and cells to folders and items. This was initially confusing but I was

able to find sample code to help me navigate to the inbox and iterate through the items contained

therein.

The next problem I ran into was the task of moving data from the Outlook application to Excel. I knew I

wanted the information to end up in a spreadsheet, but I wasn’t sure how I could physically move data

from the macro I started in Outlook to a spreadsheet. I found that from within any of the Microsoft

Office applications with VBA I can instantiate another Office application and call its methods from within

my working macro. I discovered that you can import many different libraries to create new objects in

macro and interact with them.

The next problem I ran into was scraping the actual email item to identify the important data. When I

wrote the webpage to send the email, I thought I would probably want to scrape the data

programmatically, or at least put the information in a format where it was easy to find the with the

human eye. I put each important item on a separate line with a label; I was able to identify it with some

pretty simple regular expressions. To use the regular expressions I had to import an additional library. I

also ran into some trouble because I found that the code to execute a regular expression pattern returns

an array, each matching item being an item in the array –which makes sense, but because I was only

expecting one match I expected to receive a string. So when I figured out what was going on I had to

manipulate the variables by saving the 0th item of each array as a string, and then storing each string

into another array of scraped data which was my final return from the function.

After the email is scraped, the next problem I ran into was inputting the data into spreadsheet form.

Obviously it would be less than ideal to create a new spreadsheet every time, so I decided to reference a

spreadsheet which I use every time and find the first blank row to start writing.

The final detail was marking the messages as read and moving them to a different folder so as to clean

up my in box. I was able to accomplish this by investigating the object’s properties, where I found

methods to mark as read and move.

Write Up Detail
I believe the simplest way to describe my script on the programming level is to paste in the code in

snippets and explain them.

This is the start of the script where I just declare the variables I used for both the excel and outlook

objects.

In the next snippet of code is where I declared variables for content manipulation. I have variables for

each of the fields that I need to pull from the email, as well as a file path.

After declaring my variables, I set the outlook variables. Here you can see I could specify a folder to use

as I iterate through to check emails. I specified the inbox folder because I’ll always use that and I want

the script to be fully automated. Before I made that decision I had a file picker allow the user to select

which folder to use. I also set a destination folder to move the emails to after they’ve been recorded.

Here I’ve implemented some error checking. The idea here is to report back if no email items are found

in the specified folder.

Once I found items in my folder I found the next step was to instantiate excel. The following snippet is

how I created an instance of excel from within outlook VBA.

Because I want to append to the same spreadsheet, I have to find the last line of the file I specified and

save the row number so that I can append from that point.

In this snippet I actually iterate through each email object, check if its subject line matches the auto-

generated message I’m looking for, and if it does, I run my own function “ParseBody.” That function

passes in the email message’s body and within the function I use regular expression and return an array

of strings containing the information I’m looking for.

The next snippet shows the regular expression object I created and properties I set, including the regular

expression pattern to find the “Contact:” line in the email. When I execute the expression with strName

= regex.Execute (strBody) I receive an array in return. As I mentioned previously, I was expecting just a

string but got an array, so I declared another string and then saved the 0th indexed value of the array to

that new string.

I repeated this exact process for each of the values I needed to extract from the email. Then I saved each

value to an array. I returned that array from the function.

After the function is run and I have populated the “parsedArray” array, I wrote those values to the

spreadsheet in the appropriate column and row. The values for the row and column are tracked in

incremented to keep the cursor moving.

In the next snippet I used the email’s timestamp to record a date on the spreadsheet. I also wrote to the

spreadsheet an additional hard coded value of “No” to signify that the person has not yet been

contacted.

Finally, after the message has been recorded to the spreadsheet, I move the message from the inbox to

another folder so that it doesn’t clutter my inbox.

VBA Game information

Conceptual Challenges

The game presented many more challenges than the business solution. In a nut shell, I made good use of

named ranges offset each range by one to simulate motion. After each cycle I check the named ranges

to see if any overlap. If the rocket overlaps with an object, there has been a collision and the game is

over. When the object reaches the center of the screen, the next object is generated. When the object

reaches the end of the screen, it is destroy.

Conclusion
This VBA script solved a business problem and has saved many hours of labor by automating a simple

process. I believe this is an appropriate application of VBA and a good business solution. I’m pleased

with the outcome.

The game I created was much more challenging and open my mind to new issues I had never considered

in my previous programming projects. I consider the game to be somewhat of a gateway into a new type

of programming that I hope to explorer in my education.

