Weston Whitaker
MBA 614 — VBA
13 April 2010

Sales Agent Scorecard Generation for
Integra Telecom

Executive Summary:

Situation:

Integra Telecom, a telecommunications service provider, has a Sales Agent Scorecard that they generate
every month from the data in their Microsoft Access database. The Scorecard itself is a Microsoft Excel
file that is formatted in a very particular way — a way that can’t automatically be done from Access.
Thus, every month, a long, tedious process is undertaken to export the data and format it properly.

Solution:

This project imbedded the automation tools required to generate that Excel report (with the proper
formatting) using a button located within the database. The user only needs to select the month the
report needs to be generated for, and the location of the final Excel file. The code takes care of all the

following actions:

* Exporting

* Formatting

* Rearranging
e File-naming
e Saving

e C(Clean-up

Integra Telecom:

Integra Telecom is a Portland, Oregon-based telecommunications service provider. They provide voice
services, internet services, communications equipment, and networking solutions throughout the
Mountain West. Their focus is on providing responsive, reliable, local service. According to the Portland
Business Journal, Integra Telecom has ranking in the Top 100 Fastest-Growing Privately-Held Companies
in 9 out of the last 10 years.

Problem Definition:

Background:

This project is in support of work being done by Scott Carlson, Business Analyst for Integra Telecom’s
Salt Lake City office. One of Scott’s responsibilities is maintaining the “Agent Commissions” database.
This is a Microsoft Access database that stores all the sales-agent commission data for the entire
company. A “dummy” database has been provided for the purposes of this project — all names and
numbers are fictional.

Desired Output:

Previously, maintaining the database required a large number of manual edits, calculations, and
program manipulations. Importing data, error checking, report generation, and query exports were all
previously tedious, repetitive, manual operations. Moreover, the maintenance work typically had to
wait until all the data had been gathered, and then must be completed a few days later for corporate-
mandated reports. Thus, maintaining this database became a monthly, late-night ritual —and a prime
suspect for VBA automation.

Currently, much functionality has been added by Scott Carlson. The portion of the automation
dedicated to this project has to do with exporting a monthly Microsoft Excel document called the “Agent
Scorecard”. The Agent Scorecard is a query-based output showing the performance of all sales agents
grouped by geographic regions. Figure 1 shows an example of how this Excel output document appears.
Notice that the first group (unhighlighted) is a collection of Utah-based sales agent sales into Utah-based
customers. They are sorted alphabetically by sales agent and subtotaled. The next section (highlighted)
is similarly organized, only this section describes the Utah-based sales agent sales into non-Utah
customers. This report also contains similar sections for Idaho-based sales agents and their sales into
Utah-based and non-Utah-based customers. There are subtotals for each section, plus sub-totals for
Utah sales agent sales and Idaho sales agent sales. There is also a grand total of all sales for all sales
agents (see Figure 2).

Effective | Commissionable Embedded | New Sold Churn & New Sold . . One-Time Agent2008Ag
LIETER ‘ e Base MRC | Breskage NRC AELEEEER || g e ‘ WEEILEE reementDate
UTAgentl Utzh 5014 $86,281.27 $12,208.00 50.00 $12,208.00 $40,084.00
UTAgentlo Utsh 50.12 510,013.78 $1,218.91 50.00 $1,219.81 $39,692.00
UTAgentll Utzh 50.08 5$1,833.49 $146.68 50.00 5$146.68
UTAgentl2 Utzh 50.10 $16,516.35 $1,610.95 50.00 $1,610.96 $39,661.00
UTAgentl3 Utsh 50.17 $2,485.38 $419.12 50.00 $418.12
UTAgentld Utzh 50.12 $1,987.87 523854 50.00 5238.54
UTAgentls Utzh 50.16 $1,031.81 $165.10 50.00 $185.10
UTAgentls Utah 50.13 5$12,267.43 $1,650.52 50.00 5165052 $39,722.00
UTAgentl? Utzh 50.12 $305.20 $36.62 50.00 $36.62
UTAgentlg Utzh 50.10 $3,074.04 $307.40 50.00 $307.40
UTAgent2 Utah 50.11 521,140.48 5223238 50.00 52,2323 539,783.00
UTAgent20 Utsh 50.15 53,386.81 550416 50.00 550416 $39,692.00
UTAgent2l Utzh 50.14 $351.26 54917 50.00 $43.17 $38,692.00
UTAgent22 Utah 50.14 51,400.00 5196.00 50.00 5196.00 539,845.00
UTAgent23 Utsh 50.10 $257.38 52674 50.00 $26.74
UTAgent3 Utsh 50.14 $87,648.06 $12,270.74 $0.00 $12,270.74 $38,722.00
UTAgents Utah 50.18 5481,065.79 587,257.53 S756.90 $88,014.43 539,692.00
UTAgents Utsh 5012 $120,852.74 $14,880.96 $4,08173 $18,962.69 $39,682.00
UTAgents Utsh 50.12 595,249.51 $11,718.30 50.00 $11,718.30 $38,722.00
UTAgent? Utah 50.12 545,458.68 55,496.14 50.00 5549614 539,661.00
UTAgents Utsh 5012 $36,157.58 54,448 02 50.00 $444502 $39,722.00
UTAgents Utsh 50.15 $1,379.56 $206.94 50.00 $206.54 $40,004.00
Subtotal 50.13 51,030,124.59 5157.290.93 54,838.63 5162,129.56
UTAgent10 Arizona 12.00% $600.75 $72.09 50.00 $72.09 9/1/2008
UTAgentlo Washington 12.00% $1,211.13 $145.33 50.00 $145.33 9/1/2008
UTAgentls california 12.00% $600.00 $72.00 50.00 $7200 10/1/2008
Figure 1: Example Excel Output Form of the Agent Scorecard
Market Idaho
ar1a Mountain west
Muonth Feb-10
EFF C issionable Mew Sold | Churn& | New Sold Residual me- ime =
Jusmilans [Ramemme Residual Embedded Base MRC Breakage NRC Commission ‘ CD"::::ISID" ‘ [[ctallisaament Agl;:::enl
ID&gent1 Utah $0.15 $129.047.08 $21012.12 $5249 $21066.67 $39.692.00
IDAgent2 Utah $0.09 $7.993.97 $E9262 $0.00 $69262 43973300
IDAgent3 Utah $0.13 35341205 $6,530.03 $0.00 $633003 $3972200
IDAgent4 Utah $0.12 $2133243 $2,709.27 $0.00 $2709.27 43973300
IDAgents Utah $0.12 $3,004.92 $2.86 $0.00 $111286 $39.783.00
D& gents Utah $0.06 $2,836.97 $453.93 $0.00 $453.93
IDAgent? Utah $0.12 $1.255.07 $150.61 $0.00 $15061 $39,753.00
ID&gents Utah $0.06 $2,359.21 $375.95 $0.00 $37595 $38.783.00
IDAgents Utah $0.12 $518.26 $E2.20 [$45.04) $1706 $39.753.00
Fubtotal r s01z 7 $99,212 98 r $12.393.57 7 $45.04) 7 $12,348 53
IDAgent Arizona 14253 $599.83 $85.48 $0.00 $35.48 2008
IDAgent Califarnia 14252 $1.338.37 $130.72 $0.00 $190.72 2008
IDAgent Colorada 15,593 $34146 $53.23 $0.00 $53.23 2008
IDAgent] Minnesota 17003 #1013 $18.73 $0.00 $18.73 2002
IDAgent Oregan 14423 $899.32 $129.71 $0.00 $129.71 2008
IDAgent1 Washington 17.003 $399.00 $E7.82 $0.00 $67.82 2008
IDAgent3 Arizona 1261% $499.34 36299 $0.00 $52.99 1042008
1D Agent3 Minnesata 15,0032 $245.4 $37.4 $0.00 $37.4 1042008
IDAgent3 Oregan 13443 $2,003.34 $269.25 $0.00 $269.25 1042008
IDAgent3 washington 12105 $2,140.17 $255.96 $0.00 $258.96 1042008
Fubtetal r Heox” $7.980.59 r $1.088.83 " $0.00 " $1.088.83
Idaho Totals 13.69% $107,193.57 $0.00 $0.00 $0.00 $13,482.40 ($45.04) $13,437.36
Grand Totals 13.67% $1,211,357.21 $0.00 $0.00 $0.00 $182,681.63 $4,793.59 $187,475.22

Figure 2: Example Excel Output Form of the Agent Scorecard - showing sub-totals and grand-totals

Starting Point:

The dummy database provided already had a specified user-interface for the Agent Scorecard Export
functionality. The goal is to create the Excel Spreadsheet output from the Microsoft Access database by
pressing the designated button on the existing user-form.

Select Month i

Import Residuals

Import Order
Detail from C5V

Import Order
Detail from Excel

First input
Update Installation Status Table requirement from the

Verify Installations user — the button

Update Status Archive Table won’t initiate without
a value in the drop-

Check Errors

down box.

After checking errors, select these
2 buttons - and edit the notes in
the corresponding tables

Button provided to

initiate the code. Update Table: Installed Orders
Mot Paying Residuals

Update Tahle: Past Residuals Mot
Paying Now

Print Commission Statements

Print Agent Scorecard

Print RFC

Export Residual C5Vs

Figure 3: Existing Access Database User-form - includes "Print Agent Scorecard" button designated for this project

The agent scorecard data was already collected in a query in the database labeled
“gryAgentScorecard2”. The “Print Agent Scorecard” button was provided with the functionality to open
the agent scorecard query in table format. The button also required a month selection from the “Select
Month” combo box before opening the query (since the query was based on the selected month).

Solution:

The “Submacro”:

The first step in developing the code for this project was to explore the built-in functionality of Microsoft
Access. In the design view of the provided user form, the property sheet for the “Print Agent Scorecard”
button shows a link to a place where a macro can be “embedded” into the button on the form (see
Figure 4).

==} flmButtons\ * | Property Sheet .
.| Selection type: Command Button

I R e e A |
& Detail ICommandS j
R S S 1
T T
On Click [Embedded Macro] M2 |
e —= !
Import Residuals On Lost Focus
- On Dbl Click
Import Order | Import Order On Mouse Down
Detail from Excel | Detail from CSV On Mouse Up
On Mouse Move
Update Installation Status Table On Key Down
Verify Installations On Key Up
On Key Press
Update Status Archive Table On Enter
Oin Exit
Check Errors

Update Table: Installed Orders
Mot Paying Residuals

Embedded Macro
attached to the “Print

Update Table: Past Residuals Not
Paying Now

Agent Scorecard” button

Print Commission Statements E

Print Agent Scorecard

Print RFC

Export Residual CSVs
::::::::::I:::::::::::::::::::::::I::::::::

Figure 4: Design View of the user form - with the "Print Agent Scorecard" button highlighted - notice the Embedded Macro
shown on the Property Sheet

The embedded macros in Access have quite a bit of functionality. It is fairly easy to export a query to a
spreadsheet, but it is impossible to manipulate that spreadsheet. Thus, it became necessary to write
additional code to manipulate the exported query data into the format desired. Figure 5 shows a copy
of the Access SubMacro interface with some of the key functionality. An important feature of the
“subMacro” is the “Run Code” option. This is where code written in a module using the VBA editor can
be called.

Manipulating Excel from Access:

One of the biggest challenges in writing the code to manipulate Excel was “translating” it back to the
Access program. It was necessary to enable the “Microsoft Excel 14.0 Object Library” Reference. The
important code elements in manipulating Excel from Access are setting the correct objects, and then
running the code with those objects.

El Submacro: PrintAgentScorecard

If IsMulliTempVars]![MonthSelect]] Then

End If

SetlocalVar

OpenQuery

[Maonth, CStri[TempVars]![Month5elect]))

Exports Query as an

Excel Workbook

[qgrysgentScorecard2, Datasheet, Edit)

ExportWith

Formatting [Query, gryAgentScorecard2, Excel Workbook [*.xlsx), CG/AgentScorecard.xlsx, Mo, , , Print)

RunCode

[OpenSpecific_xlIFile{[LocalVars]! [Month]))

/by CloseWindow (Query, gryAgentScorecard2, Mo)
MessageBox (Microsoft Access requires re-starting to clear\gut the memory and finish outputting the file,, Yes, MNone,)
CloseDatabase

RunCode [reopenagain])

End Submacro

F- [2dd New Action

Opens and manipulates
exported workbook

Figure 5: The Microsoft Access SubMacro Interface - based on drop down boxes to select code functionality, not typing code
to create specific functionality

Display Alerts
disables warnings

about deleting
data that require
user inout

Dim oXL Az Chiject
Dim whk Az Chiject

Set oXL =
With oXL

NWisikhle True

formatter

CreateChject ("Excel.Application™)

Formatter is the
subroutine that

formats and
sorts the Excel

data using

typical Excel

.Dicp lay VBA commands.

End WITH

EXrts =

Figure 6: Code allowing for the manipulation of Excel from Access modules

The specific formatting code was found by recording a macro of a user formatting Excel in the desired
way. Due to the potential for differing numbers of sales entries (because the month could change),
multiple “place-holder” variables were utilized — allowing for easy, dynamic defining of the beginning
and end of output sections. This streamlined the alphabetizing of the entries and the insertion of the
correct formula references.

Challenges:

Temporary Variables

The database provided for this project uses a temporary variable to identify the month selected for
filtering the query data. Temporary variables are difficult to deal with due to the ambiguous nature of
their scope. Much of the formatting required in the Excel Spreadsheet (including naming the file)
required the use of the selected month. Defining a new non-temporary variable in the submacro ended

up being a suitable way to pass the temporary variable values into the module-level code (see Figure 7).
Notice that a type-conversion was required to get the information in the right format to use in the
module-level code.

SetLocalVar (Month, Cstri[TempWars]![Month5elect]))

Figure 7: Creating a non-temporary variable that can pass information to module-level code

Clean-up:

One of the unique challenges of this project was the need to clean the code up after use. The Excel file
Access first exported was located in a different place and named differently than the final output file.
Thus, it became necessary to delete an Excel file from Access VBA code. This was done as follows:

SJub deleter()

Dim KillFile A=z 3tring
KillFile = ™Mo:hbhgentScorecard.xlsx™
'Check that file exists
If Len(Dir§ (KEillFile)l) > 0O Then
'Fir=st remove readonly attribute, 1if =et
Sethttr KillFile, whlMormal
'Then delete the file
KEill KillFile
End If
End 3Zuhb

Figure 8: Kill-file code - deletes the unnecessary files created during the processing of this code

