
Weston Whitaker

MBA 614 – VBA

13 April 2010

Sales Agent Scorecard Generation for

Integra Telecom

Executive Summary:

Situation:

Integra Telecom, a telecommunications service provider, has a Sales Agent Scorecard that they generate

every month from the data in their Microsoft Access database. The Scorecard itself is a Microsoft Excel

file that is formatted in a very particular way – a way that can’t automatically be done from Access.

Thus, every month, a long, tedious process is undertaken to export the data and format it properly.

Solution:

This project imbedded the automation tools required to generate that Excel report (with the proper

formatting) using a button located within the database. The user only needs to select the month the

report needs to be generated for, and the location of the final Excel file. The code takes care of all the

following actions:

• Exporting

• Formatting

• Rearranging

• File-naming

• Saving

• Clean-up

Integra Telecom:
Integra Telecom is a Portland, Oregon-based telecommunications service provider. They provide voice

services, internet services, communications equipment, and networking solutions throughout the

Mountain West. Their focus is on providing responsive, reliable, local service. According to the Portland

Business Journal, Integra Telecom has ranking in the Top 100 Fastest-Growing Privately-Held Companies

in 9 out of the last 10 years.

Problem Definition:

Background:

This project is in support of work being done by Scott Carlson, Business Analyst for Integra Telecom’s

Salt Lake City office. One of Scott’s responsibilities is maintaining the “Agent Commissions” database.

This is a Microsoft Access database that stores all the sales-agent commission data for the entire

company. A “dummy” database has been provided for the purposes of this project – all names and

numbers are fictional.

Desired Output:

Previously, maintaining the database required a large number of manual edits, calculations, and

program manipulations. Importing data, error checking, report generation, and query exports were all

previously tedious, repetitive, manual operations. Moreover, the maintenance work typically had to

wait until all the data had been gathered, and then must be completed a few days later for corporate-

mandated reports. Thus, maintaining this database became a monthly, late-night ritual – and a prime

suspect for VBA automation.

Currently, much functionality has been added by Scott Carlson. The portion of the automation

dedicated to this project has to do with exporting a monthly Microsoft Excel document called the “Agent

Scorecard”. The Agent Scorecard is a query-based output showing the performance of all sales agents

grouped by geographic regions. Figure 1 shows an example of how this Excel output document appears.

Notice that the first group (unhighlighted) is a collection of Utah-based sales agent sales into Utah-based

customers. They are sorted alphabetically by sales agent and subtotaled. The next section (highlighted)

is similarly organized, only this section describes the Utah-based sales agent sales into non-Utah

customers. This report also contains similar sections for Idaho-based sales agents and their sales into

Utah-based and non-Utah-based customers. There are subtotals for each section, plus sub-totals for

Utah sales agent sales and Idaho sales agent sales. There is also a grand total of all sales for all sales

agents (see Figure 2).

Figure 1: Example Excel Output Form of the Agent Scorecard

Figure 2: Example Excel Output Form of the Agent Scorecard - showing sub-totals and grand-totals

Starting Point:

The dummy database provided already had a specified user-interface for the Agent Scorecard Export

functionality. The goal is to create the Excel Spreadsheet output from the Microsoft Access database by

pressing the designated button on the existing user-form.

Figure 3: Existing Access Database User-form - includes "Print Agent Scorecard" button designated for this project

The agent scorecard data was already collected in a query in the database labeled

“qryAgentScorecard2”. The “Print Agent Scorecard” button was provided with the functionality to open

the agent scorecard query in table format. The button also required a month selection from the “Select

Month” combo box before opening the query (since the query was based on the selected month).

Solution:

The “Submacro”:

The first step in developing the code for this project was to explore the built-in functionality of Microsoft

Access. In the design view of the provided user form, the property sheet for the “Print Agent Scorecard”

button shows a link to a place where a macro can be “embedded” into the button on the form (see

Figure 4).

First input

requirement from the

user – the button

won’t initiate without

a value in the drop-

down box.

Button provided to

initiate the code.

Figure 4: Design View of the user form - with the "Print Agent Scorecard" button highlighted - notice the Embedded Macro

shown on the Property Sheet

The embedded macros in Access have quite a bit of functionality. It is fairly easy to export a query to a

spreadsheet, but it is impossible to manipulate that spreadsheet. Thus, it became necessary to write

additional code to manipulate the exported query data into the format desired. Figure 5 shows a copy

of the Access SubMacro interface with some of the key functionality. An important feature of the

“subMacro” is the “Run Code” option. This is where code written in a module using the VBA editor can

be called.

Manipulating Excel from Access:

One of the biggest challenges in writing the code to manipulate Excel was “translating” it back to the

Access program. It was necessary to enable the “Microsoft Excel 14.0 Object Library” Reference. The

important code elements in manipulating Excel from Access are setting the correct objects, and then

running the code with those objects.

Embedded Macro

attached to the “Print

Agent Scorecard” button

Figure 5: The Microsoft Access SubMacro Interface - based on drop down boxes to select code functionality, not typing code

to create specific functionality

Figure 6: Code allowing for the manipulation of Excel from Access modules

The specific formatting code was found by recording a macro of a user formatting Excel in the desired

way. Due to the potential for differing numbers of sales entries (because the month could change),

multiple “place-holder” variables were utilized – allowing for easy, dynamic defining of the beginning

and end of output sections. This streamlined the alphabetizing of the entries and the insertion of the

correct formula references.

Challenges:

Temporary Variables

The database provided for this project uses a temporary variable to identify the month selected for

filtering the query data. Temporary variables are difficult to deal with due to the ambiguous nature of

their scope. Much of the formatting required in the Excel Spreadsheet (including naming the file)

required the use of the selected month. Defining a new non-temporary variable in the submacro ended

Exports Query as an

Excel Workbook

Opens and manipulates

exported workbook

Display Alerts

disables warnings

about deleting

data that require

user input

Formatter is the

subroutine that

formats and

sorts the Excel

data using

typical Excel

VBA commands.

up being a suitable way to pass the temporary variable values into the module-level code (see Figure 7).

Notice that a type-conversion was required to get the information in the right format to use in the

module-level code.

Figure 7: Creating a non-temporary variable that can pass information to module-level code

Clean-up:

One of the unique challenges of this project was the need to clean the code up after use. The Excel file

Access first exported was located in a different place and named differently than the final output file.

Thus, it became necessary to delete an Excel file from Access VBA code. This was done as follows:

Figure 8: Kill-file code - deletes the unnecessary files created during the processing of this code

