
Mark Tuttle
Final Project Paper
VBA

Get a Room!

Introduction
Each semester brings new group projects that require meeting together on many occasions.
Usually the worst option is meeting at someone’s house or apartment. Thus it falls on someone
in the group (hopefully responsible) to remember to reserve a room for the group. However, if
this person remembers too late, or even in time but during a busy week, then the chances of
getting a room that suits the group’s needs are very small. In fact, most of my group meetings
occur after 5:00 PM due to this problem. Sometimes a group will find an open room during busy
hours only to be kicked out at the next half hour because a different group had it reserved. When
we learned how to access internet explorer, make JavaScript calls, and maneuver in an internet
browser, I saw a solution to this problem. My project will involve entering in the times that our
groups need to meet and four nights before the day my computer will automatically make the
appropriate reservation.

Implementation

In an effort to practice writing good code and code that is relatively robust, the design of this
program is laid out in many methods, each performing its unique function. The following table
describes the class variables created and their description:

Name Type Description

ie Object

This is the internet explorer instance and ultimately contains the html of the page

and from which the code is executed and manipulated

HTML String A string copy of the html of the reservation page

dayTime Type

This type is used to construct the JavaScript that is called from the code and has

several variables associated with it.

startT String

(of dayTime) The start time, retrieved from the spreadsheet and formated

appropriately.

endT String

(of dayTime) The end time, retrieved from the spreadsheet and formated

appropriately.

room String (of dayTime) The room ID, assigned by the user from a list on Sheet 2.

block String

(of dayTime) This is a variable used by the browser to know how many cells to

color for the reservation. Each block represents 30 minutes, thus a two hour

reservation will be 4 blocks. Ultimately this is the determinate of the length of

time the reservation and also how many half-hour blocks of time the user may

register in one day (the max being 4).

weekArray Type

This type is used to retrieve information from the table of weekdays and

associated preference reservation times entered by the user.

weekA() weekArray This is the array that holds the weekArray type objects.

automate boolean

If the automation process is running, a true instance will run the "login" method

without asking the user for authentication information but will retrieve it directly

from the spreadsheet cells that ask for it.

The following table describes the methods used with their input parameters:

Name Type Parameters Description

main sub None

This is the process for the manual entry room reserve. It calls

other methods and functions to complete the process in an

organized way.

Automated sub None

This is the process for the automated room reserve. It

involves a lot of formatting and information retrieval from

the spreadsheet. It also calls other methods.

login sub None

If the process is automated or manual this method handles

how to authenticate onto the BYU Marriott School room

reservation site.

manualReserve sub None

This method retrieves the data from the spreadsheet to

formulate the JavaScript ajax call and makes the ajax call. It

also handles formatting of the variables and is called by the

manual entry process (the initial logic is organized differently

for these processes, hence the need for a distinct method call

than automation to send in the room request).

javaScript Function

starttime, endtime,

roomID, blocks

Receives the reservation inputs as parameters and makes the

ajax call using the parameters passed through. This is the call

to the BYU server.

openPage Sub Url as string

This opens the webpage, using the URL as an input

parameter

openIE sub None

Creates an internet explorer object and instance and sets the

browser to visible.

waitForLoad sub None

Allows the website to load without continuing on to the

other processes

updateHTML sub None

This updates the HTML variable that stores the html for the

site

saveFile sub path and theText Saves the html to the path specified in the parameter

The “main” Sub Procedure
The “main” method is the process organizer for the manual entry process. This method is critical
for calling the appropriate methods in the proper order for the manual entry of the reservation to
be completed. The first thing this method does is request the user to input from the form
“frmPassword”. Next the methods are called to open Internet Explorer and the login method
called (see description below) to log the user in to the reservation site. The html of the
destination site is saved to the same path as the workbook and then the reservation sub procedure

is called (see description below: manual reservation). When this sub procedure is done the entire
process is complete, thus it both begins and ends the manual reservation method (manual
meaning the date is chosen by the user).

The “automated” Sub Procedure
This method cannot be called from the spreadsheet but is called from a VB script. Windows Task
Scheduler runs this VB Script each night at 12:01 AM. The method is instructed to choose a date
six days from the current date. This is significant because the browser only allows undergrad
students to reserve rooms three days in advance, but grad students can reserve five days. At first
I thought that bypassing the browser and calling the JavaScript directly allowed me to step over
the “three day” security. But what actually happened was my status was change from undergrad
to grad student. Thus I thought my testing was allowing me the extra days but in reality it wasn’t
bypassing any security, a total let-down. This method creates an array with the preferred times of
each day of the week that the user has chosen. The method then compares the date five days out
to the day of the week in the array and chooses the appropriate time and creates the data string to
be sent through JavaScript. It opens the website and presents the login screen. The login method
is called, but because the user may not be at the computer when this runs, the login method
gathers the authentication directly from the spreadsheet.

The “login” Sub Procedure
This method authenticates the user and puts that authentication information into the browser
when it is called. This method also verifies whether the browser logged the user in automatically
(by cookies) as often occurs. When I was testing the login ability, often the browser would go
directly to the site without needing to authenticate, throwing several errors in my code. A for
loop goes through the first 45 HTML tags and checks the innerText to see if my name and
username show up (the username is in tag 34, so 45 should suffice any major changes to the
code). If they do then the process is skipped. If they do not then the login process continues by
inputting the form “frmPassword” information in the browser. The form screen shot and code for
the “automated or manual” decision are pasted below.

The code for verifying that the user isn’t already logged in is below:

The “manualReserve” Sub Procedure
 This procedure is called by “main” and is relatively simple. It was the last feature added to the
code because it is valuable for a person who wants to reserve a time outside of the automated
times and off-schedule for unforeseen needs of a room. It creates a type “daytime” object and
sets the starttime, endtime, roomID, and block variables from the information provided in the
spreadsheet. The javaScript method is referenced to make the JavaScript call to the web server.
The “Format” function formats the date and time how they need to be formatted when the ajax
call is made.

The “javaScript” Function
To get this information I had to analyze the JavaScript code that the web designers wrote. It was
complicated to find which function did what and ultimately what needed to be done. I spent more
than four hours searching both the JavaScript pages they have and the html to understand what
was going on. Once I figured it out, I got help from Dr. Allen to learn how to call JavaScript
from a VBA module, only to figure out that the very next day the web programmers introduced a
completely new way of doing their site, using ajax. After much frustration I found again where
they make the call to the web server and got more help from Dr. Allen. We recreated the ajax
call and this is the result. It receives parameters and constructs the ajax. No matter what else, the
code must appear exactly as it does when the JavaScript calls it. I attempted to make minor
changes and it will not call until it is exactly the same. (See screen shot below).

Learning Details

Wireshark
This project presented several opportunities to learn additional utilities in order to perform this
task. The first utility I used is an HTTP packet sniffer called Wireshark. I needed to use this tool
because I needed to see what the parameter “event” looked like when the JavaScript made the
web server call. Below is a screen shot of the packet that contained the string I needed and the url
of the web server that I also needed.

Highlighted in blue, line 7, is the line that contains the packet. In order to see these results, I
looked for a packet that contained “POST” in the description. I later did a filter for the word
“POST” and this was the first packet that contained it. On the very bottom of the screen shot
there is a “Line-based text data:” section. When I expanded this line I saw the string that I
needed (the very bottom “startTime=2010…”).

VB Script
In class we did one example of a VB Script and how it can be used to call Excel. I had never
used VB Script before and was intimidated by it, not knowing how to do anything else besides
open Excel. The class example code was great but wasn’t specific to the process I needed to run.
I looked online at forums of how to run a VBA macro from VB Script. I finally found one and
wrote the VB Script below to initiate the automated process. “Automated” is the sub procedure
that is described above and called to run this process without any need for user input.

Windows Task Scheduler
To schedule the automated process I searched how to run a batch file and put it in the registry as
a program that runs when my computer is turned on. This was pretty complicated so I asked
some friends if they had additional ideas. One recommended Windows Task Scheduler, which is
relatively easy to use. The set up wizard allows for creating a basic task and below is a screen
shot of browsing for my VB Script file.

JavaScript in VBA
Finding the appropriate JavaScript function was a challenge but I thought as soon as I found it I
would be able to simply call it and reserve the room. It turned out to be a lot bigger challenge
than that. Below is a screen shot of the original JavaScript file.

Not being too familiar with JavaScript, it took me a long time to figure out what all the syntax
meant. The variables all had different syntax, some having “$” in front and others not being
passed through or instantiated here. I went in for help from the professor who helped me recreate
the JavaScript file in VBA. After two hours we were finally able to only call the “ajax” portion
of the code without having to figure out where all those variable settings are originating. The
function below is the result of what we worked on.

It mimics exactly what the original code calls and simply inserts the parameters it receives into
the “data” section. One challenge that wasn’t foreseen was the very last line:
“reservationMessage.dialog(“open”)”. This box was causing a verification of the reservation box
to open that couldn’t be closed unless the user clicked “ok”. I attempted to change this line, add a
line that closes the box (mimicking the line above it), and even deleting it all together. Any
change to this ajax call caused the ajax to simply not run. I couldn’t find where this originated
from besides just here. To get around this challenge, I had to redesign how the rooms were

scheduled from the spreadsheet so that only one reservation was made per day. This allows the
browser to just close instead of having to click the box closed. Although this may seem like a
less desirable result, the new design is actually better and more user-friendly.

A challenge that came about on my last test was not foreseen. On the reservation confirmation
dialog box the standard text showed up with my reservation time with an SQL statement at the
end. Below is a shot of the dialog box.

At first I thought this meant that I had logged in too many times but after some research it
appears that there was a problem with the tables and a duplicate entry. The problem for my code
is that this reservation wasn’t actually recorded, even though the confirmation came through. I
consulted with the professor who told me somewhere in my code I am making the same call
twice. After reading my code I had a string variable that I was setting equal to the function. This
was making the call once, and then the code quickly made the call again. Once I commented the
first code out then the reservation worked just fine.

Arrays and Types
Although simple to most programmers I had to learn and use arrays efficiently in my code. I
wanted to make an array of objects that held the day of the week and the hours that are to be
reserved on each day. Here is the type that I created (left) and also the array of the type (right).

Overall Experience
The project I chose is not the world’s most challenging business problem, but it is a solution that,
automated, is so much better for the user than manual entry. As such, I learned that business
problems can be solved using VBA and other tools. These solutions simplify and improve the
life of the business. This can also provide advantages to businesses. For example, I now have an
advantage on reserving rooms over all other students because I don’t have to “remember” each
day when the day becomes available. Rather my code is run automatically. This will allow me
prime access to the best rooms that other students will not have. If this were a business it would
provide a competitive advantage that would allow a company to grow better and faster than
competitors.

I also learned the value of choosing something unfamiliar and learning how to pursue solutions
to problems that are unclear or vague. I had not really used an HTTP sniffer before, had never
written anything in VB Script, nor used Windows Task Scheduler. It can be intimidating learning
new tools, but I learned that with some study, desire, and hard work most any tool can be learned
and utilized to solve the problem.

It was very helpful for me to choose my own project because I was forced to think through things
on my own and come up with a solution that worked. It was also helpful because it was
something I was interested in and was personally invested in finding the solution to. Since
starting this project I have been able to implement these skills to help a TA write code to email
all of the students of the class the scores on their tests, saving him four hours after each test. All
of this allowed me to learn the value of automation and taking responsibility over a project and
will hopefully lead to lucrative opportunities in the future.

