
Scott Hawkins
MBA 614
Final Project Summary
4/13/10

Zilch! - Playing with VBA

Introduction

 For my project I choose to be a little unorthodox and create a game rather than a business

solution. I chose to recreate the game Zilch which I have played various versions of throughout the

years. I initially chose the game with the idea of adding AI to the program in the form of a computer

opponent. However, after many grueling hours, I decided to stick with the basic functions and just make

sure that the game worked without bugs.

 Ziltch! is a game of chance, where you decide how many points to risk every time you roll the

dice. Players who play too conservatively will not reach 10,000 points as fast as their more aggressive

opponents. However, those players who play too aggressively will Ziltch often and be left behind. While

there is a lot of luck involved, the game is enjoyable because of the conservative/aggressive dynamic.

Here are the official rules taken from the game:

Welcome! If you are familiar with the rules the
click on the button to the left start your game.

The Rules

The object of the game is to be the first one to score 10,000
points. Once you pass 10,000 points, your opponent will
have one turn to try to pass your final score. If they are
unable to do this then you will be declared the winner!
GAMEPLAY
During each round you will try to score as many points as
possible without Ziltching. You Ziltch when you roll dice
that do not yield any points. You must score points to be
able to roll again. Bank your points to end your turn and
add these points to your score. If you Ziltch, your turn will
end and you will get 0 points added to your score.
SCORING
5's are worth 50 points
1's are worth 100 points
Three 2's are worth 200 points
Three 3's are worth 300 points

Three 4's are worth 400 points
Three 5's are worth 500 points
Three 6's are worth 600 points
Three 1's are worth 1000 points
4-of-a-kind is worth double the 3-of-a-kind value
(example: Four 2's are worth 400 points)
5-of-a-kind is worth double the 4-of-a-kind value
(example: Five 2's are worth 800 points)
6-of-a-kind is worth double the 5-of-a-kind value
(example: Six 2's are worth 1600 points)
Three pair is worth 1500 points
A run is worth 1500 Points
Having six dice with no score is worth 500 points

Rolling the Dice

 Getting the dice to roll was probably the easiest part of the programming process. Using paint I
created 18 different dice: 6 white, 6 purple and 6 grey. I then created an array of picture boxes and
placed them on my form (see form below.)

 The rolling of the dice happened by selecting a random number 1-6 and then changing the
image on the corresponding picture box. This was very simple code, but does require the pictures to be
in the same folder as the excel spreadsheet.

 A better solution would have been to create 18 separate picture boxes and make them visible as
needed. After finishing the project I deemed this too time consuming of a change to make and
therefore left it as is.

Recognizing a Ziltch

 My first programming task was to create a way for the program to recognize when scoring was
not possible and therefore end the turn of said player. This was a fairly straightforward set of sub
routines. If the player has six dice left then a Ziltch is impossible. This made it easier to screen only for
ones, fives and three or more of a kind. A simple subroutine for each could quickly determine if a player
Ziltches.

Scoring

 By far the most difficult part of the code was in calculating the scoring. This is where I spent the
bulk of my time writing code. Upon reflection, I’m sure that I could have found a way to make cleaner
code that was less repetitive. However, I am very confident that it works and works well. Sometimes
my ‘cleaner’ solutions have a lot more bugs.

 The most difficult part of the whole process was in the sheer number of combinations. Below I
have included a section of my scoring chart that shows most, but not all of the combinations. The
problem is that in Ziltch, you can score different items in one roll. For example, I could get three 4’s and
score 400 points, while also selecting a 5 and a 1, which would add 50 and 100 points respectively. I had
to make sure my code would score the 400 without ignoring the 150 points.

 Just to see what I was up against I started listing possible combinations. It turns out that there
are 55 ways to score with 6 dice, 30 ways with 5 dice, 17 with 4 dice, 8 with 3 dice, 3 with two dice and 2
with 1 die. That’s a total of 115 different scoring possibilities!

 I essential created a sub that would do all the work for me and return a true if it found the
number of requested dice.

 This little sub did a lot of work as it was repeated an untold number of times as the program
runs. After creating this I simply had to load 115 different scenarios to input values into the sub to find
if there was a match. The creation of these 115 sections of code was the more tedious portion of the
programming and takes up the bulk of the code. Here is what it looks like for when there is only one die
selected:

 Very simply, it asks if num1 (the dice value) can be found diceNum (number of times found)
number of times. If it comes back true then it accepts a value for the current score and stops searching
for new possibilities.

 Looking for more than one value simply required a nested if statement to check if the second
value existed the required number of times.

Debugging

 Once I had the game play and the winning ironed out, it was time to debug the program and
make sure that it worked properly. I used a couple of tools to be able to test with ease. This was
important since I had to debug over 115 different scoring possibilities.

 The above code when activated called an input box for me to enter the dice values. This let me
quickly enter the combinations I need to test. The process of running through 115 possible
combinations went fairly quickly using this method. After testing I found around 7 different
combinations where I had made simple typing errors when copying the code.

 Another trick I used was some test code to adjust the score to 9000 per player. This allowed me
to test on the winning code without having to play the game all the way through. Believe it or not, but
having the correct player win was the most buggy part of the whole program and had to be adjusted
several times.

Conclusion

 This was a very fun project to work on. It turned out to be a lot more difficult than I originally
anticipated, however I am pleased with the results. If I want to play with this program in the future, it is
set up so that I can easily make it more customizable and add players names, a high score list, computer
players, etc. It is very conceivable that I will return to this project and add a few new layers to improve
my VBA skills.

 Let me conclude then with a programming joke: Three men were driving together in a car,
when they approached a steep hill. As the car went down the hill, the driver lost control and the car
went off into the ditch. The first man, who was a mechanical engineer, suggested they pop the hood
and see where the car had malfunctioned. The second man, who was an electrical engineer, suggested
they check the breaker box to check for electrical failure. The third man, who was a computer
programmer, disagreed with his colleagues. He thought they should simply push the car back up the hill
and see if it crashed again on the way down!

