MBA 614 Final Project
Ryan Kimlinger

PennyPincher 1.0

Executive Summary

The purpose of my VBA project is to provide an automated tool that scans a list of items
purchased from Staples, downloads the latest prices for the items in the inventory, and
requests partial refunds if prices for any of the purchased items have dropped.

The resulting program, PennyPincher 1.0, has the potential to save small businesses
hundreds or even thousands of dollars every year by ensuring that the business takes full
advantage of Staples’s 14 day price guarantee.

The user of this program enters key pieces of data from a Staples purchase into a
spreadsheet by using a user form that is accessed via a button on the spreadsheet. The
user may then choose one of two options to check for price changes.

One option is a onetime check that checks all the prices, sends out e-mails requesting
partial refunds for items that have dropped in price, updates the data in the spreadsheet,
then terminates. The second option sets the program to repeat the price check at regular
intervals of the user’s choosing.

One of the most valuable aspects of this program is that, when it does find an item that
has a new, lower price, the program actual sends an e-mail to Staples customer service
detailing the drop in price and requesting a refund. This ensures that no refund
opportunity is ever missed due to delay or forgetfulness on the user’s part.

Implementation

Step 1: Project Design

The first step in creating PennyPincher 1.0 was to design the project. This may seem like
an obvious step, and it may seem like this step was accomplished once I had decided to
write an automated price match program. However, there were several key decisions that
had to be made about the scope of the project, and I had to do a lot of research to discover
what key data points would be needed from the user for Penny Pincher to work correctly.

The hardest decisions for me were the ones regarding the scope of the project. When I
started the project, I had intended for PennyPincher 1.0 to have many capabilities which |
ultimately determined to be unrealistic. For example, I had hoped to write a program that
would take invoice data from several different online retailers and check for price match
opportunities amongst those retailers.

However, it quickly became clear that this would not be possible. The main reason was

that each retailer’s website displayed the data in a very unique way. In fact, many of the
retailers I looked at displayed their prices in such a way that it was almost impossible to

reliably extract the current price for use in the program.

Another factor that led to me deciding to stick to just one retailer was the horror stories I
heard about trying to get online retailers to price match to a competitor. I studied several
online thrift forums where I read story after story from individuals who requested, to no
avail, that online retailers honor their price match policies. This made it clear that a
program that attempted to automate price matching between retailers would have little
success.

Ultimately, I decided to write a program that would focus solely on price matching
Staples purchases to Staples prices. This was based not only what I read in the forums,
but also on my personal experience. I have had several opportunities to request partial
refunds from Staples as part of the firm’s 14 day price guarantee, and the process has
always been very easy. That was very important for a program that would make
automated, e-mail requests for refunds.

Once I had determined the appropriate scope for the project, the next step was to identify
the key points of data that PennyPincher 1.0 would need in order to successful complete
its task. The images below show the form that created to gather the key data points and
the resulting spreadsheet.

PennyPincher 1.0: Purchase Entry Lihj

Purchased Item Brother TN-250
Item Mumber 465267

37.79

Purchase Price

Purchase Date 412/10
Delivery Date 4/13f10
Crder Mumber ’hxxxxx—

Add Purchase to Database

Cancel

The picture above shows the key points of user input that I determined would be
necessary for PennyPincher 1.0’s success. In fact, the only essential points of data are the
item number, the purchase price, and the order number. The other data are simply used
to make the spreadsheet invoice more user friendly, as shown below.

A B C D E F G H |

Iltem Purchase Current Latest Purchase Delivery Pricematch Order
1 ltem Number Price Price Match Price Date Date Deadline Number
2 |Brother TN-250 Toner Cartridge 465267 $37.79 537.79 N/A 4/12/2010 4/13/2010 4/27/2010 Lxxxxx
3 |Quartet® BoardGear™ Markerboard Cleaner 556134 5799 57.99 N/A 4/5/2010 4/6/2010 4/20/2010 Zxxxxx
4 |Microsoft Wireless Laser Desktop 4000 631887 539.95 539.95 N/A af7/2010 4}’8}'2010' 4,"22!2010.|3xxxxx
5 |Staples® One-Touch™ 40-Sheet Adjustable 3-Hole Punch 678950 $43.99 $43.99 N/A 4/6/2010 4/7/2010 4/21/2010 dxxxxx
]

You may notice a few data points in the picture above that were not listed in the user
input form. These items are either generated by the program based on the other inputs, or
they are downloaded from Staples.com.

As mentioned, the only points of data actually needed to accomplish the price match
request are the item number, the purchase price, and the order number. The item number
is essential because it is used to look up the current price information on Staples.com
(more on the actual code for that process later).

The purchase price is necessary because it gives the program a starting point to which it
can compare updated price information. Finally, the order number is important because
PennyPincher 1.0 uses it in the price guarantee request e-mail to identify which order
(and therefore which customer) requires a refund (see image of an example e-mail
below).

Price Match Request mbex [x

=4 StaplesVBA show details 11:08 PM (37 minutes ago) | 45 Reply | ¥
Dear Staples:

[tem number 681887, which | purchased in arder 300000, has dropped in price from $100 to $39.95. Please refund the difference. Thanks.

Purchasing Department

© Reply =¥ Forward

Finally, once I had decided the scope of the project and the necessary inputs, I had to
outline what steps would have to be executed in the code. After this, of course, came
writing the code.

Step 2: Coding

The coding for this project took a lot of fine tuning. It was easy to take the lessons from
class, such as sending e-mail with VBA, and apply them to some of the key steps in the
program. However, it was very difficult getting them all to work together. Here is an
over view of the basic steps executed by the program.

First, a user must input the data from Staples.com purchases. This is initiated by clicking
the “Add Purchase” button seen in the image below.

A B s D E F G H | J K L
Item Purchase Current Latest Purchase Delivery Price Match — Order
Item Number Price Price MatchPrice Date Date Deadline Number
Brother TN-250 Toner Cartridge 465267 53779 $37.79 N/A 4/12/2010 4/13/2010 4/27/2010 Lxxxxx Add Purchase
Quartet® BoardGear™ Markerboard Cleaner 556134 $7.99 57.99 NJA 4/5/2010 4/6/2010 4/20/2010 2xxxxx
Microsoft Wireless Laser Desktop 4000 681887 539.95 $39.95 N/A 4/7/2010 4/8/2010 4/22/2010 3xxxxx
Staples® One-Touch™ 40-Sheet Adjustable 3-Hole Punch 678950 $43.99 $43.99 N/A 4/6/2010 4/7/2010 4/21/2010 dxxxxx

Initiate Continual
Price Check

W k|~ o[

=
o

One Time Price
Check

=
=

e
=

Clicking this button brings up the “Purchase Entry” user form shown on page 2. The
code behind this form is pretty standard. It takes the user inputs and places them into the
appropriate cells in the spreadsheet.

I initially toyed with the idea of storing the info in an array within the VBA code as well,
but this seemed redundant since I would still be displaying the same information for the
user to see on the spreadsheet. I decided to let the spreadsheet be my array. In addition
to the inputs from the user, the code inserts a “current price” amount, a “latest match
price” amount, and a “price match deadline.”

The “current price” item is initially set by the program to be equal to the “purchase
price.” However, every time the program runs, it downloads the current price on
Staples.com and updates this cell. This is the cell that is used to determine whether or not
there has been a decrease in price.

Initially, the program compares the current price to the purchase price. However, each
time a price guarantee is requested, the program stores the new base price in the “latest

match price” column, which is initially defaulted to N/A (since initially no request has
been made to Staples).

From the point forward, the program uses that latest price as the base to compare to the
current price. This ensures that no duplicate requests are sent and that the program
continues looking for new refund opportunities in case the price should drop again.

The logic used to accomplish this is displayed in the code below. The “dataRange”
object is identified in a sub that runs prior to composeMail. In the case of the spreadsheet
shown in previous images, it would encompass cells A2 through I5.

Sub composzeMail()

Dim m A= String
Dim m2 As 5tring
Dim x As Long

m = "Dear Staples:" & vbNewLine & vbNewline & "Item number <NUMBER>, which I purchased in order <ORDER" & _
", has dropped in price from $<OLDPRICE> to $<NEWPRICE>." & _
" Please refund the difference. Thanks." & vbNewLine & vbNewline _
& "Purchasing Department”

For x =0 To row - 1

If dataRange.Cells(x + 1, 3).Value > dataRange.Cells(x + 1, 4).Value _
ILnd UCase(dataRange.Cellz(x + 1, 5).Value) = UCaze("N/L") Then

m2 = Replace(m, "<CRDER>", dataRange.Cells(x + 1, 9).Value)

m2 Replace (m2, "<CLDPRICE:>", dataRange.Cellsz(x + 1, 3).Value)
m2 = Replace(m2, "<NEWPRICE»", dataRange.Cells(x + 1, 4).Value)
Replace (m2, "<NUMBER:", dataRange.Cells(x + 1, 2).Value

m
zendMail m2, "staplesvbalgmail.com", "Price Match Reguest", "staplesvba", "ilovebyu"
dataRange.Cells(x + 1, 5).Value = dataRange.Cells(x + 1, 4).Value

Elself dataRange.Cells(x + 1, 4).Value < dataRange.Cells(x + 1, 5).Value _
ILnd UCase(dataRange.Cellz(x + 1, 5).Value) <> UCase("N/L") Then

mZ = Replace (m, "<ORDER>", dataRange.Cellsz(x + 1, 9).Value)

mZ2 = Replace (m2, "<OLDERICE>", dataRange.Cells(x + 1, 5).Value)
m2 = Replace (m2, "<NEWPRICE>", dataRange.Cellsz(x + 1, 4).Value)
m2 = Replace (m2, "<NUMBER>", dataRange.Cells(x + 1, 2).Value)

gendMail m2, "staplesvbalgmail.com®, "Price Match Request", "staplesvba", "ilovebyu"
dataRange.Cells(x + 1, 5).Value = dataRange.Cells(x + 1, 4).Value
End If

Hext

End Sub

When reviewing this logic above, it may appear that one thing is missing: the 14 day
deadline. My experience, and the experiences documented in the online forums I
researched, shows that Staples.com often allows price matches outside the 14 day
timeframe as a courtesy to their customers.

As aresult, I did not write code that would determine whether or not the item in question
is still within the acceptable window—after all, the window sometimes changes. Had I
picked an arbitrary deadline and put it in the code, I could have caused the user to miss
refunds that Staples.com would have allowed. The price match deadline mentioned on
the spreadsheet was included so that the user would have a reference point in case a
request was denied.

Another important point about the code above is that I used the same e-mail address to
send and receive the requests. This is so that I was not bothering Staples.com with my
practice requests. This part of the code would have to be updated for actual use by a
business.

Also, in order to avoid giving out my personal e-mail and password, I set up a new gmail
account just for this assignment.

As mentioned previously, the user can choose whether to run the program just once or on
a regular basis. If the user chooses to leave the program running, he or she would simply
click on the “Initiate Continual Price Check” button seen on page 4. This brings up the
following user form:

[UserForml Iﬁ

Enter how long, in seconds, PennyPincher 1.0 should wait
between each price ched:. Then didck “Initiate.”

Be sure to enter an interval between 120 seconds and
32,757 seconds,

Initiate ‘ Cancel

As shown in the image above, the user is prompted to enter an interval of time between
120 seconds and 32,767 seconds. I chose 120 seconds based on my experience in
debugging the code. Two minutes seemed to be just the right amount of time to allow for
the user to step in and stop the program without crashing Excel while also running often
enough to ensure that no price drops are missed. I chose 32,767 seconds as the max
because it seems like more than enough time and because that corresponds for the upper
limit of an integer variable. That brings me to the code used to set up this timer. This
code is shown below.

Cption Explicit

Public runTime A= Double

Pubhlic runInterval A= Integer

Public Const runSub = "constantCheck"”

Sub initiateConstantCheck()

FrmInterval . Show

Call constantCheck

End Sub
Sub constantCheck ()

Application.ScreenlUpdating = False
Call nameRange

Call getPricelData

Call composeMail

Call runTimer

Application.ScreenUpdating = True

End Sub

Sub runTimer()
runTime = Now + TimeSerial (0, 0, runInterval)
Application.CnTime EarliestTime:=runTime, Procedure:=runsub,
Schedule:=True
End Sub

While there are some steps left out of the code displayed above, it should give an idea of
how the overall process works. Clicking the button on the spreadsheet calls sub
initiateConstantCheck. This brings up frmInterval, which takes the user input and sets it
as variable runlnterval.

Once the code has executed the subs that populate the data, check for price changes, and
send any necessary e-mails, it calls sub runTimer. This sets a timer which will re-run the
program at the interval that was set by the user.

Difficulties

One of the biggest difficulties I encountered was working with the data from Staples.com
and other sites. In fact, that was one of the factors that caused me to limit the program to
just one site. Every site displayed the item prices in a different manner. In fact, even
within one site, prices were displayed in different manners for different products.

This meant that I could not write one piece of code that could handle the data from
several different sites. As discussed previously, I ultimately focused on Staples.com
because of the reliability of their price match program, but I would have liked to include
more than one site in my project.

Another difficulty I had was in setting up the project to run at regular intervals without
user intervention. I couldn’t find anything in the class text that assisted with this task, so
I ultimately spent a lot of time researching online Excel blogs. It would have been easier,
at least as far as writing the code, just to run an infinite loop.

Unfortunately, that solution would have meant that the user would have to dedicate an
entire computer to this one task. Furthermore, it would have made my debugging process
take a lot longer. Fortunately, I was able to find a few different solutions online. After
combining pieces of each and coming up with a way to allow the user to select the
interval between program runs, I had a solution that worked for me.

More importantly, I was able to learn some valuable VBA tricks that I'm sure I’ll be able
to use outside the classroom.

