
FINAL PROJECT ISYS 540

By Jeff Baxter

4/12/10

EXECUTIVE SUMMARY

Circuit board manufacturers are paid to

put capacitors, resistors, inductors and

ICs onto circuit boards. Their revenue is

tightly coupled to the quantity of parts

that they can put on boards in an hour.

The equipment they use to put parts on

to boards is called placement

equipment. The MyData brand of

placement equipment is used by a local

circuit board manufacturer (see image

to the right) and this machine stores a record of each time it places a part on a board. The business

owner wants a way to display how many mounts are happening on this machine each hour. He

would like a chart that displays the output of the machine over time.

PROBLEM DETAILS

Here is a snippet of the data that is logged by the MyData machine:

-;16828136;14;AF 0016827949;16827949;15;AF 0016827721;16827721

>HTC;2279;1;H01;A Front;2;H01;A Front;3;H01;A Front;5;H01;A Front;6;H01;A Front

-;7;H01;A Front;8;H02;A Back

>M;774;0;537;265;7

>M;774;0;42;260

The problem is to open this data file and read in the “M” or mount lines and determine when they

occurred (time is stored in unix time on this machine) and then make a chart of the output, with a

count of how many mounts occurred in the last hour.

SOLUTION

The VBA script opens the data file in the directory that it is saved in and reads in every line in that

file into a string. It then uses the findnext and other scripts we wrote in class to locate mount lines

and their times. This order of operations is detailed in figure 1.

The first step is to open the file that contains all the placement data. This data always has the same

name and internal formatting, because it is created by the placement equipment. That is why it is

unnecessary to ask for the file name when the macro runs. It opens the file with a file handle

number and then reads in one line at a

be very large because the files that we are reading in are large.

the bottom of the screen updates

the software has hung during the long file import times.

Once the file is entirely inside a string

mount events in the string. Here I used the findnext

find the appropriate string of characters. I also instated several copies of the findnext module

because I needed to look for more than

mount occurred to see what hour

I would determine this using a two step method

entire unix time stamp. Various other

mount operation. The mount operation only writes the increment of time it t

So, I would look through the string looking for the next unix time stamp, and use it to update the

running clock. Every time there was a mount

out what time the mount occurred

the next fifty parts take 200 milliseconds each

not the case because of rounding error in the mount durations. That is why it is necessary to update

the clock any time there is another

Once we have determined when a mount occurred, then the hour it

incremented by one. This mount count is

is a copy of that chart:

File handling

Open

file

Close

file

File parsing

Find

mounts

Time

stamps

Figure 1 – Code layer summary

ine at a time into a very large string variable. This string variable can

the files that we are reading in are large. For convenience, the indicator bar at

the bottom of the screen updates what line we are on in the file, so that the user does not think that

the software has hung during the long file import times.

Once the file is entirely inside a string I close the file and then begin the process of finding the

mount events in the string. Here I used the findnext text parser that we wrote for parsing HTML to

find the appropriate string of characters. I also instated several copies of the findnext module

I needed to look for more than the mount characters alone. I also needed to kn

to see what hour “bucket” it fell into.

I would determine this using a two step method. First of all, I looked through the string to find an

Various other operations print an entire time stamp to the file, but not a

mount operation. The mount operation only writes the increment of time it took to do the mount.

So, I would look through the string looking for the next unix time stamp, and use it to update the

running clock. Every time there was a mount operation I would add the duration to the clock to find

occurred. For example, if we mount the first part at 1:00:00 pm and then

he next fifty parts take 200 milliseconds each, then the clock should be at 1:00:01 pm. This is often

not the case because of rounding error in the mount durations. That is why it is necessary to update

the clock any time there is another full Unix time stamp.

Once we have determined when a mount occurred, then the hour it falls in gets its mount count

incremented by one. This mount count is the data that the chart displays, in mounts per hou

File parsing

mounts

stamps

Data presentation

Update the chart

Code layer summary

time into a very large string variable. This string variable can

For convenience, the indicator bar at

file, so that the user does not think that

close the file and then begin the process of finding the

text parser that we wrote for parsing HTML to

find the appropriate string of characters. I also instated several copies of the findnext module

to know when a

. First of all, I looked through the string to find an

print an entire time stamp to the file, but not a

ook to do the mount.

So, I would look through the string looking for the next unix time stamp, and use it to update the

I would add the duration to the clock to find

if we mount the first part at 1:00:00 pm and then

should be at 1:00:01 pm. This is often

not the case because of rounding error in the mount durations. That is why it is necessary to update

in gets its mount count

mounts per hour. This

The chart above is a summary of the pl

running this piece of software. This allows the owners of the business to understand which shifts

are producing the most placements and make business decisions b

I ran into some challenges with the unix time converter. I struggled to get the time zone right and

also to convert unix time appropriately. I believe that I have all of those issues worked out and that

the data truly corresponds to the correct hour.

This project was helpful to me to get a real chance to use some of the nift

wrote in class. The only down side with this method was that it took over night to run on the large

data file that I had. I think the data file had hundreds of thousands of lines in it, and this caused the

software to take forever to import. I wish there was a way to import an entire file directly into a

string. That would have greatly streamlined the whole thing.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7

is a summary of the placements that occurred over a month-long period

. This allows the owners of the business to understand which shifts

producing the most placements and make business decisions based on that output.

CHALLENGES

I ran into some challenges with the unix time converter. I struggled to get the time zone right and

also to convert unix time appropriately. I believe that I have all of those issues worked out and that

to the correct hour.

This project was helpful to me to get a real chance to use some of the nifty parsing tools that we

wrote in class. The only down side with this method was that it took over night to run on the large

d. I think the data file had hundreds of thousands of lines in it, and this caused the

software to take forever to import. I wish there was a way to import an entire file directly into a

string. That would have greatly streamlined the whole thing.

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hour

Mounts

long period created by

. This allows the owners of the business to understand which shifts

ased on that output.

I ran into some challenges with the unix time converter. I struggled to get the time zone right and

also to convert unix time appropriately. I believe that I have all of those issues worked out and that

parsing tools that we

wrote in class. The only down side with this method was that it took over night to run on the large

d. I think the data file had hundreds of thousands of lines in it, and this caused the

software to take forever to import. I wish there was a way to import an entire file directly into a

21 22 23 24

