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EXECUTIVE SUMMARY 

Circuit board manufacturers are paid to 

put capacitors, resistors, inductors and 

ICs onto circuit boards. Their revenue is 

tightly coupled to the quantity of parts 

that they can put on boards in an hour. 

The equipment they use to put parts on 

to boards is called placement 

equipment. The MyData brand of 

placement equipment is used by a local 

circuit board manufacturer (see image 

to the right) and this machine stores a record of each time it places a part on a board. The business 

owner wants a way to display how many mounts are happening on this machine each hour. He 

would like a chart that displays the output of the machine over time.  

PROBLEM DETAILS 

Here is a snippet of the data that is logged by the MyData machine: 

-;16828136;14;AF 0016827949;16827949;15;AF 0016827721;16827721 

>HTC;2279;1;H01;A Front;2;H01;A Front;3;H01;A Front;5;H01;A Front;6;H01;A Front 

-;7;H01;A Front;8;H02;A Back 

>M;774;0;537;265;7 

>M;774;0;42;260 

  

The problem is to open this data file and read in the “M” or mount lines and determine when they 

occurred (time is stored in unix time on this machine) and then make a chart of the output, with a 

count of how many mounts occurred in the last hour.  

SOLUTION 

The VBA script opens the data file in the directory that it is saved in and reads in every line in that 

file into a string. It then uses the findnext and other scripts we wrote in class to locate mount lines 

and their times. This order of operations is detailed in figure 1.  

The first step is to open the file that contains all the placement data. This data always has the same 

name and internal formatting, because it is created by the placement equipment. That is why it is 

unnecessary to ask for the file name when the macro runs. It opens the file with a file handle 
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Figure 1 – Code layer summary
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The chart above is a summary of the pl

running this piece of software. This allows the owners of the business to understand which shifts 

are producing the most placements and make business decisions b

I ran into some challenges with the unix time converter. I struggled to get the time zone right and 

also to convert unix time appropriately. I believe that I have all of those issues worked out and that 

the data truly corresponds to the correct hour. 

This project was helpful to me to get a real chance to use some of the nift

wrote in class. The only down side with this method was that it took over night to run on the large 

data file that I had. I think the data file had hundreds of thousands of lines in it, and this caused the 

software to take forever to import. I wish there was a way to import an entire file directly into a 

string. That would have greatly streamlined the whole thing. 
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is a summary of the placements that occurred over a month-long period

. This allows the owners of the business to understand which shifts 

producing the most placements and make business decisions based on that output.

CHALLENGES 

I ran into some challenges with the unix time converter. I struggled to get the time zone right and 

also to convert unix time appropriately. I believe that I have all of those issues worked out and that 

to the correct hour.  

This project was helpful to me to get a real chance to use some of the nifty parsing tools that we 

wrote in class. The only down side with this method was that it took over night to run on the large 
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software to take forever to import. I wish there was a way to import an entire file directly into a 
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