
Final Project Write-Up

Jesse Carman

2.1 Executive summary of the project. This should contain a description of the business

along with an overview of the system you built

Carman Violin Studio is in need of a student database management system to enable the

violin instructor (my wife) to easily create invoices and receipts for her students, to

automatically generate personalized emails to her students, and to allow her to view

students’ profiles in an organized manner (student information is spread across 30+

columns of data). The management system also needs to keep a concise historical record

of each student’s charges, fees, credits and payments. It also requires the ability to easily

add new students to the database and change their activity status (Active/Inactive) as

students have a tendency to quit and then start-up lessons again from time to time.

Because the instructor teaches both private and group lessons, the system needs the

ability to differentiate between the two and enable the user to input, and make changes to,

both types of lessons. Reschedules, cancellations, and no-shows are also a regular

occurrence among students, thus the system will need to be able to account for such

activities. Finally, the system will need to be able to track two periods of time for each

student. First, how many reschedules individual students have requested over a rolling 3-

month period. And second, what 2-month period each individual student is currently in

(students must sign 2-month contracts which automatically renew until the student quits).

To address this situation, I created a Microsoft Excel workbook that includes an “Invoice-

Receipt” sheet, a database sheet listing all students in alphabetical order, and a separate

sheet for each student which tracks their respective transaction history. I created a user

form that enables the instructor to view any student’s information in a concise manner. I

created a “Go To” feature that enables to instructor to quickly move from one student’s

file to another. I also created sub procedures enabling the instructor to perform the

following tasks: add new students to the database; schedule private and/or group lessons;

record 48-hour notices of cancellation, reschedules, no-shows, late payment fees,

returned check fees, and payments; change student activity status; and generate emails to

be sent from her violin studio email account (a record of the day and time emails are sent

is also kept). The workbook includes a hidden template worksheet of how a student’s file

should look which is copied when adding students to the database. Each sub procedure

opens a user form to enable the instructor to input the required information for each

student and then takes that information and records it accordingly. Finally, I created a

separate macro toolbar, “Violin Tools,” that has each of these commands listed on it for

accessibility on any worksheet at any time. The toolbar is automatically opened (and

nested below the regular toolbars) upon open of the workbook and automatically hidden

upon workbook close.

As time went on I added to my project a “Puzzle” game which I created in Excel and can

be played during boring lectures in class. It is the file titled “Puzzle.” This game is a 4 x

4 block of 16 cells containing the numbers 1-15 and a blank cell. The numbers 1-15 are

randomly placed within the 4 x 4 block and the user is supposed to rearrange them in the

correct order, reading left to right starting in the top left cell, using the blank cell. By

simply clicking on any cell in the 4 x 4 block the numbers will shift as allowed.

2.2 Implementation documentation. Provide a concise, well-organized documentation of

what you actually did for your solution. You may want to use tables or bulleted lists to

describe the components of your solution and their role in the overall task. In any case,

you should provide a textual description of the elements so it is clear what you have done,

why it was included, how it is intended to be used in the task. Screen captures may be

helpful in illustrating what you have done.

Violin Studio Workbook

To begin with, all the instructor had was a list of students she’s currently teaching

compiled in an Excel spreadsheet along with some scattered information such as: phone

number, age, past experience, email and address. What I first put together was a more

organized database spreadsheet with a column for every piece of data she would like to

have in the future (for privacy reasons I am not including actual students but rather

fictitious students I made up). This can be seen in the “Data” worksheet of the workbook

and a snip-it is shown below. From the snip-it it is clear how much of a pain it would be

to try to view all the data for any student. It would require scrolling horizontally back

and forth across some 30 columns.

To solve this problem I created a user form that allows all the data in columns A through

AD to be viewed at once. The user form is shown below and is activated by pressing the

“View Profiles” button on the “Violin Tools” toolbar, or calling the “info” sub procedure.

The form shown below, frmStudentInformation, will then appear with a drop-down box

containing all the students. Simply

changing the drop-down box will change

the data shown to the respective student.

This user form can be shown on any

worksheet in the workbook. The sub

procedure loads the user form which pulls

all the current students from the “Data”

sheet to load into the drop-down box.

Then upon click of the student in the box

the user form pulls the respective data

from the “Data” sheet and displays it in

the user form. This was one of three

main functions the instructor wanted the

workbook to be able to do.

The next thing I did was create the

“Invoice-Receipt” worksheet that enables

the instructor to create monthly invoices

to be sent to students. The instructor

wanted it to be limited to one month at a

time. Because of the numerous formulas embedded into the worksheet I locked all cells

on this page except for three: the student, invoice month, and year cells. These three cells

contain built-in drop-down boxes containing, respectively, all the students, the months

January through December, and the years 2010 through 2020 (this can easily be increased

if there is need). Once the user selects the student, his/her name, address, phone number,

and email are pulled, using

vlookup formulas, from

the “Data” sheet and listed

(as shown in the image

below). When the month

and year are chosen they

are concatenated into cell

B16 showing the invoice

month and year. Cell D9

contains the “=today()”

formula for the invoice

date. There are three

buttons actually on this

sheet (the only buttons not

in the “Violin Tools”

toolbar). One button,

“Refresh Date,” refreshes

the dates shown in cells G8 and G9 (indicating how many days are in the month); the

next button, “Create Invoice,” pulls all transactions for that student relating to the chosen

month and year from the students profile sheet and loads them into the invoice range; and

the “Clear Invoice” button that clears the invoice. When this page is printed off the print

range is set to only include the invoice range and not include the buttons or other parts of

the worksheet used for creating the invoice (as shown in the second image below). This

was the second capability the instructor wanted the workbook to have.

Before creating the

“Invoice-Receipt”

worksheet, I created a

template worksheet that is

hidden at all times. This

template is used when a

new student is added to the

database. The template

contains all the cell

formatting that will be

needed for normal use of

the workbook. When the

user presses the “Add

Student” button in the

toolbar, the

“addNewStudent” sub

procedure is called which opens up the frmnewStudent user form. This user form allows

the instructor to input all necessary information for the new student and then takes that

information and adds the student to the database, then re-alphabetizes the database by the

student’s first name. It then creates a new worksheet titled as the student’s full name

which is simply a copy of the template. The user form, student file template, and an

example of a filled out student’s file are shown below.

The third and final capability the instructor wanted the workbook to have is the ability to

generate mass and individualized emails. To do this the instructor simply needs to press

the “Email” button in the toolbar and the “sendmessages” sub procedure is called. First,

the password user form pops up (as shown below) requesting the user to enter her

password (the studio email address is automatically shown as the username without

having to type it).

This window

actually verifies the

password typed in

before proceeding

because I have it

coded into the sub

procedure. Though

potentially

dangerous if

someone were to

look into the code,

the instructor liked

this idea better

because she will know that she entered the password correctly before she types the entire

email and hits send. The workbook itself will be password protected so that only the

instructor can open it anyway. The added email password is one final precaution for

sending emails. Once the password is verified, the user form shown below opens up and

allows the instructor to type the subject and body of the email. The sub procedure then

personalizes each email based on the information in the “Data” sheet (their first name,

and email address) and then sends the email with her personalized salutation at the end

(built-in to the sub procedure so she does not have to type it each time). The last email

sent is one to her own studio so she can always have a copy of the emails to see how they

look. When the procedure is done sending all the emails (only to “Active” students) then

a message box appears stating that such is the case. The user simply presses enter or the

okay button and then the procedure records the date and time each email was sent in a log

for each student. The log is stored on the “Data” page simply for a reference. It is stored

in the columns AJ and up.

Since sending email was the third and final function of the workbook, the remainder of

this section of the paper will discuss the various sub procedures used for maintaining the

student profiles. This can become exceedingly boring, but I felt it was necessary because

it was the majority of my work in the workbook. I won’t be offended if you skim the rest

(of this section). The first is the “Go To” button that calls the “goToStudent” sub

procedure which opens up the “frmStudentLookUp” user form. This user form contains

only a drop-down box containing: “Invoice-Receipt,” “Data,” and each students name.

As the student, or other page, is selected the workbook goes directly to the corresponding

worksheet in the workbook. This will come in handy when the instructor has many

students. The form is shown below.

The next button, and each button discussed hereafter, first calls the “goToStudent” sub to

get the user on the right profile, then executes its respective function. The first button not

yet discussed is the “Add Monthly Lessons” button that calls the “addNewPrivate”

procedure which opens the “frmAddMonth” user form. This user form enables the user

to choose what days the lessons will be on and in what month, assuming the lessons are

on the same day each week. After the form is filled out the procedure fills out the

student’s profile appropriately by pulling the private lesson charge from the “Data” sheet.

The next button “Add Group Lessons” calls the sub “addNewGroup” which does exactly

the same thing, but for group lessons.

The “48-Hr Notice” (of cancellation) button calls the “fourtyEightHourNotice” sub

procedure. This opens the “frmFourtyEightHrCancel” user form that allows the user to

enter the date the instructor was notified of the cancel and the date of the originally

scheduled lesson (little did I know as I created this that I was misspelling “forty” as

“fourty”). The month and year are also entered by the user for invoice purposes. After

the form is filled out it then adds the cancellation to the student’s profile and credits back

the student 40% of his/her regularly scheduled lesson charge. Profiles are sorted based

on date of transactions before the procedure ends.

The “Reschedule” button calls the “reschedule” procedure and opens the

“frmReschedule” user form. This form is identical to the “frmFourtyEightHrCancel.”

After the relevant data is entered into the form the procedure reschedules the lesson on

the student’s profile. The “No Show” button calls the “noShow” sub which opens the

“frmNoShow” user form. After the necessary data are entered into the user form, then

the sub adds a No-Show entry to the student’s file.

The “Cancel” button calls the “cancellation” procedure which opens the “frmCancel”

user form. This requires the input of the date of notification of cancel, the time of

notification, and the date of the regularly scheduled lesson. The time is important here

because it will distinguish between a forty eight hour notice of cancellation and a forty

seven hour notice of cancellation, as these are treated differently. The “Late Pay Fee”

($10) and “Rtrn Check Fee” ($25) buttons call the “latepaymentfee” and

“returnedCheckFee” sub procedures which call the “frmLatePay” and “frmReturnCheck”

user forms. These assess the relevant fees to the student’s profile as given in the

company contract.

Puzzle

The second file I included in this project was done to give me a brief break from the

Violin Studio workbook. As shown below it is a very simple game that uses sub

procedures to move the numbers around. The first image below is what it looks like

when it is opened (it automatically hides all toolbars, worksheet tabs, status bars, ribbons

(if 2007), etc, and resizes the window to where it’s only big enough to include the game).

The second image is an example of what it looks like after you press the “NEW GAME”

button.

The sub procedures are mostly simple other than the private sub

“Worksheet_SelectionChange(ByVal Target As Range)” which allows for the

“moveCells” sub procedure to be called simply by clicking any cell within the 4 x 4 block

of cells. This private sub I learned how to do from my good friend Google. It basically

consists of one If-Then statement asking if the target address is equal to any cell within

that 4 x 4 block, then call “moveCell.”

The “moveCells” sub procedure determines if there is a “” (blank) cell on the same row

or column as the cell pressed, and if so then it shifts the numbers so as to fill in that blank

cell and make the selected cell the new blank cell. Although this one looks lengthy and

confusing, it really was pretty simple to do. You’ll have to give this one a try and feel

free to look at the code. If anything it will give you a break from grading.

The “newGame” sub procedure first unlocks the worksheet and then randomly places the

numbers 1-15 into the 4 x 4 block of cells. After this is finished it relocks the worksheet

and the user is ready to play.

2.3 Discussion of learning and conceptual difficulties encountered. Let me know what

you learned by going through this project. If there are elements you wanted to include but

could not get to work, discuss these in this section. Please be sure that you have tried to

solve the problem, including asking the professor for assistance, before giving up.

1. It is crucial to get a solid understanding of what the final project is to look like

and include before you begin. This includes writing out “blueprints” of each form,

each worksheet, and a general layout of each sub procedure (this I of course failed

to do). I had to make changes countless times to EVERY form and sub procedure

as new elements were introduced and thought of by the instructor.

2. Having the instructor there to make changes from time to time could either be a

wonderful help, or it could be a catastrophe. I found that as the project evolved,

the instructor over and over again changed her mind regarding how she wanted

things to look and what capabilities she wanted the workbook to have. I learned

that there are ways to create your sub procedures in such a way as to be flexible to

changes in user preferences along the way. I first wished that I did not have to

show the project to the user until I had a final product, but gradually changed my

mind as I was able to make her changes along the way before I had gotten too far

along.

3. One, of the many, technical lessons I learned from this project was how to control

sub procedures based on inputs through user forms. Perhaps I missed this section

during the class presentation on user forms, but I had the hardest time figuring out

how to make a sub procedure, that had called a user form, to exit when the user

pressed “Cancel” on the user form. After asking the professor I found that it was

a very simple solution and one that I needed for each of my user forms in order

for them to function correctly within their respective sub procedures.

4. I learned that it really is easy, and important, to have as much done in VBA as

possible, as opposed to having your code input temporary data into cells and work

with it there. There are a couple of instances where this seemed impossible to me,

but after brief research with Google I was able to find ways around my issues.

5. I learned how to work with dates in Excel, specifically this function,

“=date(year(C2),month(C2)-3,day(C2)),” for example. This is an

excellent way to track periods of time that was necessary for my 3-month and 2-

month period tracking.

6. Spelling is critical when naming things because there is no spell check. It could

potentially be embarrassing if a coworker were to see that you named a sub

procedure as “fourtyEightHrCancel” as opposed to “fortyEightHrCancel” (as I

obviously did).

7. Another very important lesson I learned is the power of Google. It is so simple to

learn how to do random things in VBA by searching on-line and seeing how other

people are doing it.

2.4 Post your write-up to the VBA Projects blog (vbaprojects.blogspot.com). The write-

up should be of sufficient detail that the professor could grade your project just by

examining the write up. That is, the write up should stand on its own merits in discussing

the project without needing to refer the reader to any of the workbook for clarification.

Your project write-up will be publicly available on the internet. The professor will

provide a location for you to upload your project files so you can link to them in the blog

post. If your project contains confidential data, you will need to make alternate

arrangements with the professor for submission.

