
Automated Market Conditions Report
Final Project for MBA 614
Developed for Farr Appraising Services
By Blaine Farr

Executive Summary
For my final project, I decided to create an automated market conditions report taken
from comparables listed in the database at www.UtahRealEstate.com. I designed this
program specifically for my father’s business, Farr Appraising Services. Currently, my
dad prints the results from his search criteria and then uses a calculator to find the
average prices for comparable homes sold in the past month, six months, and year. This
process is slow, ineffective, time-consuming, and prone to errors in the calculation
process.

When first run, the program asks for the user’s username and password, and then
automates the Internet Explorer Browser to log into the website database. At this point, a
search criteria form is loaded that contains the options necessary for the search, including
five multi-selection fields populated from the online options. Once populated, the search
form is shown to the user who chooses and enters the criteria to search for comparables.
From here, the data is used to fill in the search options on the online form and the online
form is submitted.

Once the search results are available, the program automatically downloads the data into
an Excel spreadsheet. The program then manipulates this spreadsheet to provide the
important details on the comparables and to give the average prices for active and sold
listings in the last 0-3 months, 4-6 months, and 6-12 months.

After running the program for the first time, the user is also able to repeat the process
without reentering his or her username and password or reloading the search options.
Another available option is to enter the information online and then continue running the
program. These steps significantly cutsdown the processing time of the search and adds
efficiency to the program.

Previously, my dad spent about 10-15 minutes performing this step for each of his
appraisals. Assuming he does about 10 appraisals per week, this program could save him
up to 100 hours per year, or two full weeks of work! This will allow him to spend more
time with the family or to do more appraisals depending on the amount of work that is
available.

http://www.utahrealestate.com/

Implementation Documentation
The main feature of the program consists of seven main
subroutines: the main, login, loadForms, getData,
submitData, createReport, and showResults subroutines.
These subroutines have been modularized to create a code
that is easier to read, execute, and troubleshoot. The
following section will provide an overview of how these
subroutines execute to run the program.

The Main Subroutine
This subroutine executes primarily by calling the other
subroutines as seen in Figure 1. By using this as a main sub,
the rest of the code is easier to read, reuse, and debug. The
first line of code tests whether the search forms are
currently loaded with the multi-select options. If the statusArray is empty, it means that
(1) the user is not logged in, and/or (2) the search forms are not loaded. By creating this
“If” statement, the program is able to skip the relatively slow login and loadForm
procedures and proceed directly to inputting search criteria.

The Login Subroutine
The login subroutine does exactly as it is entitled,
it logs into the UtahRealEstate website. First, the
code initializes and accesses the UtahRealEstate
login page. An “On Error Go To” line of code
allows the user to skip ahead if he or she is already
logged in and the code returns an error. If not
already logged in, the program displays a Login
Form as seen in Figure 2 for the user to input
his/her login credentials. This eliminates the need
to hardcode this information, which is sensitive
and changes every four months, into the code.

The LoadForms Subroutine
Once the user logs in, the program automatically populates several fields on the search
form: status, property type, style, area, and city. By automatically populating these lists
on the search form, the code will stay up-to-date as these options change, will provide the
means to submit these choices back into the server, and will prevent the user from
entering information that is not valid. Because of the nature of the online HTML code,
this step in the programming process was especially tricky and required a special
program called Webshark and some help from Dr. Allen.

First, I found where the data came from in the HTML and wrote some code to copy and
split the data into an array where each item had a unique value and text (ie. 502, Alpine).
This step was not too difficult, but then required Dr. Allen to teach me about using
collections of arrays to store data. After learning about collections of arrays, I split the
data into an array of the value (0) and the name (1), and created a collection of these

Sub getComps()
 If statusArray.Count <> 0 Then
 getData
 Else
 login
 loadForms
 getData
 End If

 submitData
 createReport
 showResults
End Sub

Figure 1—Main Sub

Figure 2—Login

Figure 3—Array Collection Code
arrays to hold information for all of the cities. With
this I was able to write some code the populated the
list box in the search form with the data from each
array in the collection. I have included an example of
this code in Figure 3 because I thought it was so
interesting and useful.

The getData Subroutine
This subroutine displays the “Search Form” as seen in
Exhibit 4 for the user to fill out and stores the inputted
information for later use. I built the “Search Form” to be more user friendly than its
online version by showing more of the multi-selection options, including a “reset”
command that clears all of the data, and writing code to prevent some types of data entry
errors, such as using a year before 1800 or a zipcode with more than five digits. As
mentioned above, the list boxes are also automatically populated from the HTML code.

Once the user enters the search criteria and clicks “OK,” the program stores and
manipulates the inputs in a format that is compatible with the online site. For the list
boxes, this required me to create a string for the values associated with each city, style,
property type, etc. To discover what type of format was required for the online form, I
had to use the Webshark program and analyze the URL that is submitted when I made
certain changes to the form. I was quite proud of this segment of code as it required an
understanding of the array collection, array, and the format of the outputs to be
compatible with the online form.

Figure 4—Search Form

For x = 0 To UBound(cities)
 city = Split(cities(x), ":")
 statusArray.Add &_
 Array(city(1), city(0)), city(0)
 Next

For x = 1 To statusArray.Count
 frmSearch.LstBoxStatus.AddItem &_

statusArray(x)(0)
Next

The submitData Subroutine
The submitData subroutine uses the data collected from the “Search Form” to submit the
data onto the online search form. This process required a special approach of submitting a
URL with the given search criteria because the layout and code of the website did not
accept the normal processes.

To submit the data, the program passes the finalized inputs from the “Search Form” to
another subroutine called addSomething with this line of code:

addSomething "param", value, "op"

The parameters are then encoded into a URL compatible form and put into this URL to
update the online form that can be seen in Figure 5. The code to do this is below

"http://www.utahrealestate.com/search/chained.update/count/true/criteria/true? param=" &
URLEncode(param) & "&value=" & URLEncode(val) & "&chain=criteriaAndCountAction"
& " & op = " & URLEncode(op) & " &advanced_search=1&submit=submit"

This process is then repeated for each of the parameters and values until all have been
entered. The program then submits the form to view the Search Results. From there, the
program saves the search results to a local file and uses the Web Query Wizard to
download the information into a worksheet.

Figure 5—Internet Search Page & Results Page

The data that is pulled into Excel comes from the following search results page seen in
Figure 6 that I first save to a local file, and then direct the web browser to.

Figure 6—Search Results Page

The createReport Subroutine
After downloading the information into the “LocalQuery” worksheet, the main Sub calls
the createReport sub to organize the data into an understable report. Compared to the rest
of the code that works with the URLs and HTML code, this part of the program was
extremely simple to write.

In this section, the code first runs several arrays to gather the necessary information for
each criterion. It then stores these values in the worksheet called “Report.” In addition to
creating arrays, assigning values to those areas, and then displaying the area in a different
area, I also had to create several new arrays. For example, I created the Days on Market
Array that calculates how long an Active Listing has been on the market or how long a
Sold Listing had been on the market. The full report is shown in Figure 7.

Figure 7—Detailed Report Page

* Note: Sold Date and Sold Price are empty because these listings have not yet been sold.

The showResults Subroutine
The final call from the main sub refers to the showResults subroutine that is used to show
the results in the table on the main worksheet. The purpose behind this subroutine is to
provide the user with the information that he or she needs for the appraisal.

To make the necessary calculations, I embedded a “Select Case” Construction within an
“If” Construction. This enabled me to screen through the statuses for the “sold” or
“active” status with the “If” construction, and then to find the number, average days on
market, and average price for comparables that have been listed or sold within the past
three months, past four to six months, and past year respectively. This is best explained
by the code and the actual worksheet as seen below in Figures 8 and 9.

Figure 8—Code to Calculate Results

Figure 9—Main Screen with Results

Additional Subroutines
After finishing the program, I felt that I could still make the program faster, more user-
friendly, and more error proof. To do this, I created another command button called
“Enter Inputs Manually.” Because I modularize my program as seen in Figure 10, this
sub was extremely easy to create and works very effeciently with fewer errors than the
rest of my program because it is simply less complex. In fact, I believe that this feature
will be the most useful for my father because it is less likely to have problems either with
being installed on his machine or with his limited knowledge of Excel.

Figure 10—Manual Input Code

This code operates by first logging into the UtahRealEstate Website, just like the other
code. It differs, however, in that it goes directly to the Online Search Form and pulls it up
for the user. A message box then appears telling the user to enter their search criteria on
the browser. Once they do this, they return to the Excel Program and click “Yes” as seen
in Figure 11.

Figure 10—Manual Input Message Box

Note: After submitting my project, I also added a “Clear Results” command that simply
clears all of the results that are being shown so that they are not confused with the next
subject appraisal.

This program runs in about 1/10 of the time of the full program, or maybe faster, and also
allows the user to see how narrow their search results have become. Once they click
“Yes,” it runs the same code as the full getComps subroutine. I believe that this
improvement will be extremely helpful for my dad because it is easier to fix, easier to
understand, faster, and less prone to bugs and human errors, of which I have had many
while working with the HTML, URLs, and so much more.

Learning and Conceptual Difficulties
I learned an incredible amount of new programming skills while working on this project.
Coming into the class, I did not have any VBA programming experience, but I have
worked hard to stay up with the class and feel confident in my ability to tackle beginning
to intermediate-level work. This project, however, required some very advanced
programming and experience in HTML and the learning curve was steep! Among the
most important lessons, I learned how to approach and tackle extremely difficult
programming problems and where to find answers to my questions. This helped me gain
experience in HTML, solidify my understanding of VBA, and improve my problem-
solving skills.

The first thing I learned was how to control and manipulate the Internet Explorer
browser. This task turned out to be more difficult than I expected because the design of
the website required me to learn some HTML code and differed from the standard online
forms. In relation to this, I also learned how to use Wireshark, a program that reads
incoming and outgoing packets. This taught me new methods to find answers to my
questions.

The next major lesson that I learned is how to build userforms and automatically populate
listboxes within those forms. I also learned how to capture this information to be
compatible with its end use or requirement. One of the challenges in doing this was
learning about and using collections of arrays. Before this project, I had never even heard
of array collections, but this tool was essential to finishing this project.

I also learned how to download necessary data from an HTML site by saving the source
code to a local file, and then referring to that code instead of the HTML. I feel that this
lesson will be very useful in the future and should be taught to future classes. In addition,
I learned how to manipulate data and create reports from the downloaded information.
Doing so raised a few challenges because the data that I needed came in rows of three
with the unique identifier on the first row. I was able to create arrays that solved this
problem using “If” constructions.

Finally, I learned that by reviewing my work after I have completed it, I can find even
better ways to write the program to make it run faster, more effectively, or more
efficiently. This was a great lesson and I am very proud of my final project, and look
forward to presenting it to my dad this week.

Conclusion
In conclusion, I have truly learned a lot from this project. I will be returning home this
next weekend and look forward to showing it to my father. Depending on the amount of
work he has in a given week, this program could save him several hours doing “busy
work” that is much better automated. Those several hours each week will save him
thousands of dollars over the course of a year. I believe that this project will be very
valuable for him and his company.

